- 14 Jun, 2018 1 commit
-
-
Stefan Agner authored
With PHYS_ADDR_MAX there is now a type safe variant for all bits set. Make use of it. Patch created using a semantic patch as follows: // <smpl> @@ typedef phys_addr_t; @@ -(phys_addr_t)ULLONG_MAX +PHYS_ADDR_MAX // </smpl> Link: http://lkml.kernel.org/r/20180419214204.19322-1-stefan@agner.ch Signed-off-by:
Stefan Agner <stefan@agner.ch> Reviewed-by:
Andrew Morton <akpm@linux-foundation.org> Acked-by:
Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 06 Apr, 2018 1 commit
-
-
Huang Ying authored
Thanks to commit 4b3ef9da ("mm/swap: split swap cache into 64MB trunks"), after swapoff the address_space associated with the swap device will be freed. So page_mapping() users which may touch the address_space need some kind of mechanism to prevent the address_space from being freed during accessing. The dcache flushing functions (flush_dcache_page(), etc) in architecture specific code may access the address_space of swap device for anonymous pages in swap cache via page_mapping() function. But in some cases there are no mechanisms to prevent the swap device from being swapoff, for example, CPU1 CPU2 __get_user_pages() swapoff() flush_dcache_page() mapping = page_mapping() ... exit_swap_address_space() ... kvfree(spaces) mapping_mapped(mapping) The address space may be accessed after being freed. But from cachetlb.txt and Russell King, flush_dcache_page() only care about file cache pages, for anonymous pages, flush_anon_page() should be used. The implementation of flush_dcache_page() in all architectures follows this too. They will check whether page_mapping() is NULL and whether mapping_mapped() is true to determine whether to flush the dcache immediately. And they will use interval tree (mapping->i_mmap) to find all user space mappings. While mapping_mapped() and mapping->i_mmap isn't used by anonymous pages in swap cache at all. So, to fix the race between swapoff and flush dcache, __page_mapping() is add to return the address_space for file cache pages and NULL otherwise. All page_mapping() invoking in flush dcache functions are replaced with page_mapping_file(). [akpm@linux-foundation.org: simplify page_mapping_file(), per Mike] Link: http://lkml.kernel.org/r/20180305083634.15174-1-ying.huang@intel.com Signed-off-by:
"Huang, Ying" <ying.huang@intel.com> Reviewed-by:
Andrew Morton <akpm@linux-foundation.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: "David S. Miller" <davem@davemloft.net> Cc: Chris Zankel <chris@zankel.net> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 18 Mar, 2018 1 commit
-
-
Khalid Aziz authored
ADI is a new feature supported on SPARC M7 and newer processors to allow hardware to catch rogue accesses to memory. ADI is supported for data fetches only and not instruction fetches. An app can enable ADI on its data pages, set version tags on them and use versioned addresses to access the data pages. Upper bits of the address contain the version tag. On M7 processors, upper four bits (bits 63-60) contain the version tag. If a rogue app attempts to access ADI enabled data pages, its access is blocked and processor generates an exception. Please see Documentation/sparc/adi.txt for further details. This patch extends mprotect to enable ADI (TSTATE.mcde), enable/disable MCD (Memory Corruption Detection) on selected memory ranges, enable TTE.mcd in PTEs, return ADI parameters to userspace and save/restore ADI version tags on page swap out/in or migration. ADI is not enabled by default for any task. A task must explicitly enable ADI on a memory range and set version tag for ADI to be effective for the task. Signed-off-by:
Khalid Aziz <khalid.aziz@oracle.com> Cc: Khalid Aziz <khalid@gonehiking.org> Reviewed-by:
Anthony Yznaga <anthony.yznaga@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 08 Jan, 2018 2 commits
-
-
Christoph Hellwig authored
We can just pass this on instead of having to do a radix tree lookup without proper locking a few levels into the callchain. Signed-off-by:
Christoph Hellwig <hch@lst.de> Signed-off-by:
Dan Williams <dan.j.williams@intel.com>
-
Christoph Hellwig authored
We can just pass this on instead of having to do a radix tree lookup without proper locking a few levels into the callchain. Signed-off-by:
Christoph Hellwig <hch@lst.de> Signed-off-by:
Dan Williams <dan.j.williams@intel.com>
-
- 16 Nov, 2017 4 commits
-
-
Mel Gorman authored
Most callers users of free_hot_cold_page claim the pages being released are cache hot. The exception is the page reclaim paths where it is likely that enough pages will be freed in the near future that the per-cpu lists are going to be recycled and the cache hotness information is lost. As no one really cares about the hotness of pages being released to the allocator, just ditch the parameter. The APIs are renamed to indicate that it's no longer about hot/cold pages. It should also be less confusing as there are subtle differences between them. __free_pages drops a reference and frees a page when the refcount reaches zero. free_hot_cold_page handled pages whose refcount was already zero which is non-obvious from the name. free_unref_page should be more obvious. No performance impact is expected as the overhead is marginal. The parameter is removed simply because it is a bit stupid to have a useless parameter copied everywhere. [mgorman@techsingularity.net: add pages to head, not tail] Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net Signed-off-by:
Mel Gorman <mgorman@techsingularity.net> Acked-by:
Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Pavel Tatashin authored
Remove duplicating code by using common functions vmemmap_pud_populate and vmemmap_pgd_populate. Link: http://lkml.kernel.org/r/20171013173214.27300-5-pasha.tatashin@oracle.com Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by:
Steven Sistare <steven.sistare@oracle.com> Reviewed-by:
Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Acked-by:
David S. Miller <davem@davemloft.net> Acked-by:
Michal Hocko <mhocko@suse.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Pavel Tatashin authored
Without deferred struct page feature (CONFIG_DEFERRED_STRUCT_PAGE_INIT), flags and other fields in "struct page"es are never changed prior to first initializing struct pages by going through __init_single_page(). With deferred struct page feature enabled there is a case where we set some fields prior to initializing: mem_init() { register_page_bootmem_info(); free_all_bootmem(); ... } When register_page_bootmem_info() is called only non-deferred struct pages are initialized. But, this function goes through some reserved pages which might be part of the deferred, and thus are not yet initialized. mem_init register_page_bootmem_info register_page_bootmem_info_node get_page_bootmem .. setting fields here .. such as: page->freelist = (void *)type; free_all_bootmem() free_low_memory_core_early() for_each_reserved_mem_region() reserve_bootmem_region() init_reserved_page() <- Only if this is deferred reserved page __init_single_pfn() __init_single_page() memset(0) <-- Loose the set fields here We end up with similar issue as in the previous patch, where currently we do not observe problem as memory is zeroed. But, if flag asserts are changed we can start hitting issues. Also, because in this patch series we will stop zeroing struct page memory during allocation, we must make sure that struct pages are properly initialized prior to using them. The deferred-reserved pages are initialized in free_all_bootmem(). Therefore, the fix is to switch the above calls. Link: http://lkml.kernel.org/r/20171013173214.27300-4-pasha.tatashin@oracle.com Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by:
Steven Sistare <steven.sistare@oracle.com> Reviewed-by:
Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Acked-by:
David S. Miller <davem@davemloft.net> Acked-by:
Michal Hocko <mhocko@suse.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Levin, Alexander (Sasha Levin) authored
Convert all allocations that used a NOTRACK flag to stop using it. Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.com Signed-off-by:
Sasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 02 Nov, 2017 1 commit
-
-
Greg Kroah-Hartman authored
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard...
-
- 16 Aug, 2017 1 commit
-
-
Nitin Gupta authored
Adds support for 16GB hugepage size. To use this page size use kernel parameters as: default_hugepagesz=16G hugepagesz=16G hugepages=10 Testing: Tested with the stream benchmark which allocates 48G of arrays backed by 16G hugepages and does RW operation on them in parallel. Orabug: 25362942 Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 10 Aug, 2017 2 commits
-
-
David S. Miller authored
It overflows the amount of space available in the initial .text section of trap handler assembler in some configurations, resulting in build failures. Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Nitin Gupta authored
Adds support for 16GB hugepage size. To use this page size use kernel parameters as: default_hugepagesz=16G hugepagesz=16G hugepages=10 Testing: Tested with the stream benchmark which allocates 48G of arrays backed by 16G hugepages and does RW operation on them in parallel. Orabug: 25362942 Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 04 Aug, 2017 2 commits
-
-
Vijay Kumar authored
On M8 chips, use a max_phys_bits value of 51. Also, M8 supports VA bits up to 54 bits. However, for now restrict VA bits to 53 due to 4-level pagetable limitation. Signed-off-by:
Vijay Kumar <vijay.ac.kumar@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Allen Pais authored
Recognize SPARC-M8 cpu type, hardware caps and cpu distribution map. Signed-off-by:
Allen Pais <allen.pais@oracle.com> Signed-off-by:
David Aldridge <david.j.aldridge@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 20 Jul, 2017 1 commit
-
-
Nitin Gupta authored
Add hstate for each supported hugepage size using arch initcall. This change fixes some hugepage parameter parsing inconsistencies: case 1: no hugepage parameters Without hugepage parameters, only a hugepages-8192kB entry is visible in sysfs. It's different from x86_64 where both 2M and 1G hugepage sizes are available. case 2: default_hugepagesz=[64K|256M|2G] When specifying only a default_hugepagesz parameter, the default hugepage size isn't really changed and it stays at 8M. This is again different from x86_64. Orabug: 25869946 Reviewed-by:
Bob Picco <bob.picco@oracle.com> Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 06 Jun, 2017 5 commits
-
-
Pavel Tatashin authored
The current wrap implementation has a race issue: it is called outside of the ctx_alloc_lock, and also does not wait for all CPUs to complete the wrap. This means that a thread can get a new context with a new version and another thread might still be running with the same context. The problem is especially severe on CPUs with shared TLBs, like sun4v. I used the following test to very quickly reproduce the problem: - start over 8K processes (must be more than context IDs) - write and read values at a memory location in every process. Very quickly memory corruptions start happening, and what we read back does not equal what we wrote. Several approaches were explored before settling on this one: Approach 1: Move smp_new_mmu_context_version() inside ctx_alloc_lock, and wait for every process to complete the wrap. (Note: every CPU must WAIT before leaving smp_new_mmu_context_version_client() until every one arrives). This approach ends up with deadlocks, as some threads own locks which other threads are waiting for, and they never receive softint until these threads exit smp_new_mmu_context_version_client(). Since we do not allow the exit, deadlock happens. Approach 2: Handle wrap right during mondo interrupt. Use etrap/rtrap to enter into into C code, and issue new versions to every CPU. This approach adds some overhead to runtime: in switch_mm() we must add some checks to make sure that versions have not changed due to wrap while we were loading the new secondary context. (could be protected by PSTATE_IE but that degrades performance as on M7 and older CPUs as it takes 50 cycles for each access). Also, we still need a global per-cpu array of MMs to know where we need to load new contexts, otherwise we can change context to a thread that is going way (if we received mondo between switch_mm() and switch_to() time). Finally, there are some issues with window registers in rtrap() when context IDs are changed during CPU mondo time. The approach in this patch is the simplest and has almost no impact on runtime. We use the array with mm's where last secondary contexts were loaded onto CPUs and bump their versions to the new generation without changing context IDs. If a new process comes in to get a context ID, it will go through get_new_mmu_context() because of version mismatch. But the running processes do not need to be interrupted. And wrap is quicker as we do not need to xcall and wait for everyone to receive and complete wrap. Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Reviewed-by:
Steven Sistare <steven.sistare@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Pavel Tatashin authored
The new wrap is going to use information from this array to figure out mm's that currently have valid secondary contexts setup. Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Reviewed-by:
Steven Sistare <steven.sistare@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Pavel Tatashin authored
CTX_FIRST_VERSION defines the first context version, but also it defines first context. This patch redefines it to only include the first context version. Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Reviewed-by:
Steven Sistare <steven.sistare@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Pavel Tatashin authored
After a wrap (getting a new context version) a process must get a new context id, which means that we would need to flush the context id from the TLB before running for the first time with this ID on every CPU. But, we use mm_cpumask to determine if this process has been running on this CPU before, and this mask is not reset after a wrap. So, there are two possible fixes for this issue: 1. Clear mm cpumask whenever mm gets a new context id 2. Unconditionally flush context every time process is running on a CPU This patch implements the first solution Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Reviewed-by:
Steven Sistare <steven.sistare@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Liam R. Howlett authored
hugetlb_bad_size needs to be called on invalid values. Also change the pr_warn to a pr_err to better align with other platforms. Signed-off-by:
Liam R. Howlett <Liam.Howlett@Oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 28 Mar, 2017 2 commits
-
-
bob picco authored
I encountered this bug when using /proc/kcore to examine the kernel. Plus a coworker inquired about debugging tools. We computed pa but did not use it during the maximum physical address bits test. Instead we used the identity mapped virtual address which will always fail this test. I believe the defect came in here: [bpicco@zareason linus.git]$ git describe --contains bb4e6e85 v3.18-rc1~87^2~4 . Signed-off-by:
Bob Picco <bob.picco@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Nitin Gupta authored
Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 23 Feb, 2017 4 commits
-
-
Pavel Tatashin authored
In add_node_ranges() when memblock resize happens, the iterator keeps using the previous freed array. This bug cause hangs on machine where there are over 128 memory blocks during boot. For example, on machines where memory interleaving is small. The problem is seen on T4-4 because it cant have 2T of memory, and memory is interleaved at 8G. So we have 2T/8G = 256 regions to set node IDs. The starting size of regions array is 128. Thus, we have to double at least one time (actually we have to double twice because some memory is already reserved and thus we need more than 256 regions). We start using an incorrect pointer to the array after the first doubling. Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Signed-off-by:
Babu Moger <babu.moger@oracle.com> Reviewed-by:
Babu Moger <babu.moger@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Pavel Tatashin authored
add_node_ranges() takes 2.6s - 3.6s per 1T of boot time. On machine with 6T memory it takes 15.4s, on 32T it would take 82s-115s of boot time. This function sets NUMA ids for memory blocks, and scans the whole memory a page at a time to do so. But, we could use values in latency groups mask and match to determine the boundaries without checking every single page. With the fix the add_node_ranges() time is reduced from 15.4s down to 0.2s on machine with 6T memory. Signed-off-by:
Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by:
Babu Moger <babu.moger@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Nitin Gupta authored
This patch depends on: [v6] sparc64: Multi-page size support - Testing Tested on Sonoma by running stream benchmark instance which allocated 48G worth of 64K pages. boot params: default_hugepagesz=64K hugepagesz=64K hugepages=1310720 Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Nitin Gupta authored
Add support for using multiple hugepage sizes simultaneously on mainline. Currently, support for 256M has been added which can be used along with 8M pages. Page tables are set like this (e.g. for 256M page): VA + (8M * x) -> PA + (8M * x) (sz bit = 256M) where x in [0, 31] and TSB is set similarly: VA + (4M * x) -> PA + (4M * x) (sz bit = 256M) where x in [0, 63] - Testing Tested on Sonoma (which supports 256M pages) by running stream benchmark instances in parallel: one instance uses 8M pages and another uses 256M pages, consuming 48G each. Boot params used: default_hugepagesz=256M hugepagesz=256M hugepages=300 hugepagesz=8M hugepages=10000 Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 24 Dec, 2016 1 commit
-
-
Linus Torvalds authored
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by:
Al Viro <viro@zeniv.linux.org.uk> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 14 Nov, 2016 1 commit
-
-
Thomas Tai authored
A compile warning is introduced by a commit to fix the find_node(). This patch fix the compile warning by moving find_node() into __init section. Because find_node() is only used by memblock_nid_range() which is only used by a __init add_node_ranges(). find_node() and memblock_nid_range() should also be inside __init section. Signed-off-by:
Thomas Tai <thomas.tai@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 11 Nov, 2016 1 commit
-
-
Thomas Tai authored
When booting up LDOM, find_node() warns that a physical address doesn't match a NUMA node. WARNING: CPU: 0 PID: 0 at arch/sparc/mm/init_64.c:835 find_node+0xf4/0x120 find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 4.9.0-rc3 #4 Call Trace: [0000000000468ba0] __warn+0xc0/0xe0 [0000000000468c74] warn_slowpath_fmt+0x34/0x60 [00000000004592f4] find_node+0xf4/0x120 [0000000000dd0774] add_node_ranges+0x38/0xe4 [0000000000dd0b1c] numa_parse_mdesc+0x268/0x2e4 [0000000000dd0e9c] bootmem_init+0xb8/0x160 [0000000000dd174c] paging_init+0x808/0x8fc [0000000000dcb0d0] setup_arch+0x2c8/0x2f0 [0000000000dc68a0] start_kernel+0x48/0x424 [0000000000dcb374] start_early_boot+0x27c/0x28c [0000000000a32c08] tlb_fixup_done+0x4c/0x64 [0000000000027f08] 0x27f08 It is because linux use an internal structure node_masks[] to keep the best memory latency node only. However, LDOM mdesc can contain single latency-group with multiple memory latency nodes. If the address doesn't match the best latency node within node_masks[], it should check for an alternative via mdesc. The warning message should only be printed if the address doesn't match any node_masks[] nor within mdesc. To minimize the impact of searching mdesc every time, the last matched mask and index is stored in a variable. Signed-off-by:
Thomas Tai <thomas.tai@oracle.com> Reviewed-by:
Chris Hyser <chris.hyser@oracle.com> Reviewed-by:
Liam Merwick <liam.merwick@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 06 Oct, 2016 1 commit
-
-
Paul Gortmaker authored
These files were only including module.h for exception table related functions. We've now separated that content out into its own file "extable.h" so now move over to that and avoid all the extra header content in module.h that we don't really need to compile these files. Cc: "David S. Miller" <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by:
Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 28 Sep, 2016 2 commits
-
-
Atish Patra authored
Currently, irq stack bootmem is allocated for all possible cpus before nr_cpus value changes the list of possible cpus. As a result, there is unnecessary wastage of bootmemory. Move the irq stack bootmem allocation so that it happens after possible cpu list is modified based on nr_cpus value. Signed-off-by:
Atish Patra <atish.patra@oracle.com> Reviewed-by:
Bob Picco <bob.picco@oracle.com> Reviewed-by:
Vijay Kumar <vijay.ac.kumar@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Paul Gortmaker authored
To fix: WARNING: vmlinux.o(.text.unlikely+0x580): Section mismatch in reference from the function find_numa_latencies_for_group() to the function .init.text:find_mlgroup() The function find_numa_latencies_for_group() references the function __init find_mlgroup(). This is often because find_numa_latencies_for_group lacks a __init annotation or the annotation of find_mlgroup is wrong. It turns out find_numa_latencies_for_group is only called from: static int __init numa_parse_mdesc(void) and hence we can tag find_numa_latencies_for_group with __init. In doing so we see that find_best_numa_node_for_mlgroup is only called from within __init and hence can also be marked with __init. Cc: "David S. Miller" <davem@davemloft.net> Cc: Nitin Gupta <nitin.m.gupta@oracle.com> Cc: Chris Hyser <chris.hyser@oracle.com> Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com> Cc: sparclinux@vger.kernel.org Signed-off-by:
Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 29 Jul, 2016 2 commits
-
-
Nitin Gupta authored
For PMD aligned (8M) hugepages, we currently allocate all four page table levels which is wasteful. We now allocate till PMD level only which saves memory usage from page tables. Also, when freeing page table for 8M hugepage backed region, make sure we don't try to access non-existent PTE level. Orabug: 22630259 Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
Mike Kravetz authored
do_sparc64_fault() calculates both the base and huge page RSS sizes and uses this information in calls to tsb_grow(). The calculation for base page TSB size is not correct if the task uses hugetlb pages. hugetlb pages are not accounted for in RSS, therefore the call to get_mm_rss(mm) does not include hugetlb pages. However, the number of pages based on huge_pte_count (which does include hugetlb pages) is subtracted from this value. This will result in an artificially small and often negative RSS calculation. The base TSB size is then often set to max_tsb_size as the passed RSS is unsigned, so a negative value looks really big. THP pages are also accounted for in huge_pte_count, and THP pages are accounted for in RSS so the calculation in do_sparc64_fault() is correct if a task only uses THP pages. A single huge_pte_count is not sufficient for TSB sizing if both hugetlb and THP pages can be used. Instead of a single counter, use two: one for hugetlb and one for THP. Signed-off-by:
Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 25 Jun, 2016 1 commit
-
-
Michal Hocko authored
This is the third version of the patchset previously sent [1]. I have basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get rid of superfluous gfp flags" which went through dm tree. I am sending it now because it is tree wide and chances for conflicts are reduced considerably when we want to target rc2. I plan to send the next step and rename the flag and move to a better semantic later during this release cycle so we will have a new semantic ready for 4.8 merge window hopefully. Motivation: While working on something unrelated I've checked the current usage of __GFP_REPEAT in the tree. It seems that a majority of the usage is and always has been bogus because __GFP_REPEAT has always been about costly high order allocations while we are using it for order-0 or very small orders very often. It seems that a big pile of them is just a copy&paste when a code has been adopted from one arch to another. I think it makes some sense to get rid of them because they are just making the semantic more unclear. Please note that GFP_REPEAT is documented as * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt * _might_ fail. This depends upon the particular VM implementation. while !costly requests have basically nofail semantic. So one could reasonably expect that order-0 request with __GFP_REPEAT will not loop for ever. This is not implemented right now though. I would like to move on with __GFP_REPEAT and define a better semantic for it. $ git grep __GFP_REPEAT origin/master | wc -l 111 $ git grep __GFP_REPEAT | wc -l 36 So we are down to the third after this patch series. The remaining places really seem to be relying on __GFP_REPEAT due to large allocation requests. This still needs some double checking which I will do later after all the simple ones are sorted out. I am touching a lot of arch specific code here and I hope I got it right but as a matter of fact I even didn't compile test for some archs as I do not have cross compiler for them. Patches should be quite trivial to review for stupid compile mistakes though. The tricky parts are usually hidden by macro definitions and thats where I would appreciate help from arch maintainers. [1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org This patch (of 19): __GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. Yet we have the full kernel tree with its usage for apparently order-0 allocations. This is really confusing because __GFP_REPEAT is explicitly documented to allow allocation failures which is a weaker semantic than the current order-0 has (basically nofail). Let's simply drop __GFP_REPEAT from those places. This would allow to identify place which really need allocator to retry harder and formulate a more specific semantic for what the flag is supposed to do actually. Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org Signed-off-by:
Michal Hocko <mhocko@suse.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Crispin <blogic@openwrt.org> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- 25 May, 2016 1 commit
-
-
David S. Miller authored
On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by:
Meelis Roos <mroos@linux.ee> Tested-by:
Meelis Roos <mroos@linux.ee> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 21 May, 2016 1 commit
-
-
Nitin Gupta authored
During hugepage map/unmap, TSB and TLB flushes are currently issued at every PAGE_SIZE'd boundary which is unnecessary. We now issue the flush at REAL_HPAGE_SIZE boundaries only. Without this patch workloads which unmap a large hugepage backed VMA region get CPU lockups due to excessive TLB flush calls. Orabug: 22365539, 22643230, 22995196 Signed-off-by:
Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 21 Apr, 2016 1 commit
-
-
Khalid Aziz authored
Add code to recognize SPARC-Sonoma cpu correctly and update cpu hardware caps and cpu distribution map. SPARC-Sonoma is based upon SPARC-M7 core along with additional PCI functions added on and is reported by firmware as "SPARC-SN". Signed-off-by:
Khalid Aziz <khalid.aziz@oracle.com> Acked-by:
Allen Pais <allen.pais@oracle.com> Signed-off-by:
David S. Miller <davem@davemloft.net>
-
- 30 Jan, 2016 1 commit
-
-
Toshi Kani authored
Set IORESOURCE_SYSTEM_RAM in flags of resource ranges with "System RAM", "Kernel code", "Kernel data", and "Kernel bss". Note that: - IORESOURCE_SYSRAM (i.e. modifier bit) is set in flags when IORESOURCE_MEM is already set. IORESOURCE_SYSTEM_RAM is defined as (IORESOURCE_MEM|IORESOURCE_SYSRAM). - Some archs do not set 'flags' for children nodes, such as "Kernel code". This patch does not change 'flags' in this case. Signed-off-by:
Toshi Kani <toshi.kani@hpe.com> Signed-off-by:
Borislav Petkov <bp@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mips@linux-mips.org Cc: linux-mm <linux-mm@kvack.org> Cc: linux-parisc@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: linux-sh@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: sparclinux@vger.kernel.org Link: http://lkml.kernel.org/r/1453841853-11383-7-git-send-email-bp@alien8.de Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-