Commit 701d6785 authored by Henry Burns's avatar Henry Burns Committed by Linus Torvalds
Browse files

mm/zsmalloc.c: fix race condition in zs_destroy_pool

In zs_destroy_pool() we call flush_work(&pool->free_work).  However, we
have no guarantee that migration isn't happening in the background at
that time.

Since migration can't directly free pages, it relies on free_work being
scheduled to free the pages.  But there's nothing preventing an
in-progress migrate from queuing the work *after*
zs_unregister_migration() has called flush_work().  Which would mean
pages still pointing at the inode when we free it.

Since we know at destroy time all objects should be free, no new
migrations can come in (since zs_page_isolate() fails for fully-free
zspages).  This means it is sufficient to track a "# isolated zspages"
count by class, and have the destroy logic ensure all such pages have
drained before proceeding.  Keeping that state under the class spinlock
keeps the logic straightforward.

In this case a memory leak could lead to an eventual crash if compaction
hits the leaked page.  This crash would only occur if people are
changing their zswap backend at runtime (which eventually starts

Fixes: 48b4800a

 ("zsmalloc: page migration support")
Signed-off-by: default avatarHenry Burns <>
Reviewed-by: default avatarSergey Senozhatsky <>
Cc: Henry Burns <>
Cc: Minchan Kim <>
Cc: Shakeel Butt <>
Cc: Jonathan Adams <>
Cc: <>
Signed-off-by: default avatarAndrew Morton <>
Signed-off-by: default avatarLinus Torvalds <>
parent 1a87aa03
......@@ -54,6 +54,7 @@
#include <linux/mount.h>
#include <linux/pseudo_fs.h>
#include <linux/migrate.h>
#include <linux/wait.h>
#include <linux/pagemap.h>
#include <linux/fs.h>
......@@ -268,6 +269,10 @@ struct zs_pool {
struct inode *inode;
struct work_struct free_work;
/* A wait queue for when migration races with async_free_zspage() */
struct wait_queue_head migration_wait;
atomic_long_t isolated_pages;
bool destroying;
......@@ -1874,6 +1879,19 @@ static void putback_zspage_deferred(struct zs_pool *pool,
static inline void zs_pool_dec_isolated(struct zs_pool *pool)
VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
* There's no possibility of racing, since wait_for_isolated_drain()
* checks the isolated count under &class->lock after enqueuing
* on migration_wait.
if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
static void replace_sub_page(struct size_class *class, struct zspage *zspage,
struct page *newpage, struct page *oldpage)
......@@ -1943,6 +1961,7 @@ static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
get_zspage_mapping(zspage, &class_idx, &fullness);
remove_zspage(class, zspage, fullness);
......@@ -2042,8 +2061,16 @@ static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
* Page migration is done so let's putback isolated zspage to
* the list if @page is final isolated subpage in the zspage.
if (!is_zspage_isolated(zspage))
if (!is_zspage_isolated(zspage)) {
* We cannot race with zs_destroy_pool() here because we wait
* for isolation to hit zero before we start destroying.
* Also, we ensure that everyone can see pool->destroying before
* we start waiting.
putback_zspage_deferred(pool, class, zspage);
......@@ -2094,8 +2121,8 @@ static void zs_page_putback(struct page *page)
* so let's defer.
putback_zspage_deferred(pool, class, zspage);
......@@ -2118,8 +2145,36 @@ static int zs_register_migration(struct zs_pool *pool)
return 0;
static bool pool_isolated_are_drained(struct zs_pool *pool)
return atomic_long_read(&pool->isolated_pages) == 0;
/* Function for resolving migration */
static void wait_for_isolated_drain(struct zs_pool *pool)
* We're in the process of destroying the pool, so there are no
* active allocations. zs_page_isolate() fails for completely free
* zspages, so we need only wait for the zs_pool's isolated
* count to hit zero.
static void zs_unregister_migration(struct zs_pool *pool)
pool->destroying = true;
* We need a memory barrier here to ensure global visibility of
* pool->destroying. Thus pool->isolated pages will either be 0 in which
* case we don't care, or it will be > 0 and pool->destroying will
* ensure that we wake up once isolation hits 0.
wait_for_isolated_drain(pool); /* This can block */
......@@ -2357,6 +2412,8 @@ struct zs_pool *zs_create_pool(const char *name)
if (!pool->name)
goto err;
if (create_cache(pool))
goto err;
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment