slab.c 114 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
186
187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188
189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
208
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
209
210
};

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
251
252
253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254
255
256
257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
258
			 */
Linus Torvalds's avatar
Linus Torvalds committed
259
260
};

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
278
279
280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
281
282
283
284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
286
287
};

288
289
290
/*
 * Need this for bootstrapping a per node allocator.
 */
291
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293
#define	CACHE_CACHE 0
294
#define	SIZE_AC MAX_NUMNODES
295
#define	SIZE_NODE (2 * MAX_NUMNODES)
296

297
static int drain_freelist(struct kmem_cache *cache,
298
			struct kmem_cache_node *n, int tofree);
299
300
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
301
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302
static void cache_reap(struct work_struct *unused);
303

304
305
static int slab_early_init = 1;

306
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
308

309
static void kmem_cache_node_init(struct kmem_cache_node *parent)
310
311
312
313
314
315
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
316
	parent->colour_next = 0;
317
318
319
320
321
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
322
323
324
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
325
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
326
327
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
328
329
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
330
331
332
333
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
334
335
336
337
338

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
339
340
341
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
342
 *
Adrian Bunk's avatar
Adrian Bunk committed
343
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
344
345
346
347
348
349
350
351
352
353
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
354
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
355
356
357
358
359
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
360
361
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
362
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
363
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
364
365
366
367
368
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
369
370
371
372
373
374
375
376
377
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
378
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
379
380
381
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
382
#define	STATS_INC_NODEFREES(x)	do { } while (0)
383
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
384
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
385
386
387
388
389
390
391
392
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
393
394
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
395
 * 0		: objp
396
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
397
398
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
399
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
400
 * 		redzone word.
401
 * cachep->obj_offset: The real object.
402
403
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
404
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
405
 */
406
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
407
{
408
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
409
410
}

411
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
412
413
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414
415
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
416
417
}

418
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
419
420
421
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
422
		return (unsigned long long *)(objp + cachep->size -
423
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
424
					      REDZONE_ALIGN);
425
	return (unsigned long long *) (objp + cachep->size -
426
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
427
428
}

429
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
430
431
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
433
434
435
436
}

#else

437
#define obj_offset(x)			0
438
439
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
440
441
442
443
444
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
445
446
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
447
 */
448
449
450
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
451
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
452

453
454
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
455
	struct page *page = virt_to_head_page(obj);
456
	return page->slab_cache;
457
458
459
460
}

static inline struct slab *virt_to_slab(const void *obj)
{
461
	struct page *page = virt_to_head_page(obj);
462
463
464

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
465
466
}

467
468
469
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
470
	return slab->s_mem + cache->size * idx;
471
472
}

473
/*
474
475
476
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
477
478
479
480
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
481
{
482
483
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
484
485
}

Linus Torvalds's avatar
Linus Torvalds committed
486
static struct arraycache_init initarray_generic =
487
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
488
489

/* internal cache of cache description objs */
490
static struct kmem_cache kmem_cache_boot = {
491
492
493
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
494
	.size = sizeof(struct kmem_cache),
495
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
496
497
};

498
499
#define BAD_ALIEN_MAGIC 0x01020304ul

500
501
502
503
504
505
506
507
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
508
509
510
511
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
512
 */
513
514
515
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

516
517
518
519
520
521
522
523
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
524
	struct kmem_cache_node *n;
525
526
	int r;

527
528
	n = cachep->node[q];
	if (!n)
529
530
		return;

531
532
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

561
static void init_node_lock_keys(int q)
562
{
563
	int i;
564

565
	if (slab_state < UP)
566
567
		return;

568
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
569
		struct kmem_cache_node *n;
570
571
572
573
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
574

575
576
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
577
			continue;
578

579
		slab_set_lock_classes(cache, &on_slab_l3_key,
580
				&on_slab_alc_key, q);
581
582
	}
}
583

584
585
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
586
	if (!cachep->node[q])
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

602
603
604
605
606
607
608
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
609
#else
610
611
612
613
static void init_node_lock_keys(int q)
{
}

614
static inline void init_lock_keys(void)
615
616
{
}
617

618
619
620
621
622
623
624
625
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

626
627
628
629
630
631
632
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
633
634
#endif

635
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
636

637
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
638
639
640
641
{
	return cachep->array[smp_processor_id()];
}

642
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
643
{
644
645
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
646

Andrew Morton's avatar
Andrew Morton committed
647
648
649
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
650
651
652
653
654
655
656
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
657

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
706
707
}

708
#if DEBUG
709
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
710

Andrew Morton's avatar
Andrew Morton committed
711
712
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
713
714
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
715
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
716
	dump_stack();
717
	add_taint(TAINT_BAD_PAGE);
Linus Torvalds's avatar
Linus Torvalds committed
718
}
719
#endif
Linus Torvalds's avatar
Linus Torvalds committed
720

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

737
738
739
740
741
742
743
744
745
746
747
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

748
749
750
751
752
753
754
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
755
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
756
757
758
759
760

static void init_reap_node(int cpu)
{
	int node;

761
	node = next_node(cpu_to_mem(cpu), node_online_map);
762
	if (node == MAX_NUMNODES)
763
		node = first_node(node_online_map);
764

765
	per_cpu(slab_reap_node, cpu) = node;
766
767
768
769
}

static void next_reap_node(void)
{
770
	int node = __this_cpu_read(slab_reap_node);
771
772
773
774

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
775
	__this_cpu_write(slab_reap_node, node);
776
777
778
779
780
781
782
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
783
784
785
786
787
788
789
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
790
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
791
{
792
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
793
794
795
796
797
798

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
799
	if (keventd_up() && reap_work->work.func == NULL) {
800
		init_reap_node(cpu);
801
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802
803
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
804
805
806
	}
}

807
static struct array_cache *alloc_arraycache(int node, int entries,
808
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
809
{
810
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
811
812
	struct array_cache *nc = NULL;

813
	nc = kmalloc_node(memsize, gfp, node);
814
815
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
816
	 * However, when such objects are allocated or transferred to another
817
818
819
820
821
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
822
823
824
825
826
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
827
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
828
829
830
831
	}
	return nc;
}

832
833
834
835
836
837
838
839
840
841
842
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
843
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844
845
846
847
848
849
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

850
851
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
852
853
854
		if (is_slab_pfmemalloc(slabp))
			goto out;

855
	list_for_each_entry(slabp, &n->slabs_partial, list)
856
857
858
		if (is_slab_pfmemalloc(slabp))
			goto out;

859
	list_for_each_entry(slabp, &n->slabs_free, list)
860
861
862
863
864
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
865
	spin_unlock_irqrestore(&n->list_lock, flags);
866
867
}

868
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869
870
871
872
873
874
875
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
876
		struct kmem_cache_node *n;
877
878
879
880
881
882
883

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
884
		for (i = 0; i < ac->avail; i++) {
885
886
887
888
889
890
891
892
893
894
895
896
897
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
898
899
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
900
			struct slab *slabp = virt_to_slab(objp);
901
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902
903
904
905
906
907
908
909
910
911
912
913
914
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

915
916
917
918
919
920
921
922
923
924
925
926
927
928
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929
930
931
932
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
933
		struct page *page = virt_to_head_page(objp);
934
935
936
937
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

938
939
940
941
942
943
944
945
946
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

947
948
949
	ac->entry[ac->avail++] = objp;
}

950
951
952
953
954
955
956
957
958
959
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
960
	int nr = min3(from->avail, max, to->limit - to->avail);
961
962
963
964
965
966
967
968
969
970
971
972

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

973
974
975
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
976
#define reap_alien(cachep, n) do { } while (0)
977

978
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

998
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
999
1000
		 gfp_t flags, int nodeid)
{