slab.c 107 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171
172
173
174
175
176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
195
196
197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198
199
200
201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
202
			 */
Linus Torvalds's avatar
Linus Torvalds committed
203
204
};

Joonsoo Kim's avatar
Joonsoo Kim committed
205
206
207
208
209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

227
228
229
/*
 * Need this for bootstrapping a per node allocator.
 */
230
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
231
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
232
#define	CACHE_CACHE 0
233
#define	SIZE_NODE (MAX_NUMNODES)
234

235
static int drain_freelist(struct kmem_cache *cache,
236
			struct kmem_cache_node *n, int tofree);
237
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
238
239
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
240
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
241
static void cache_reap(struct work_struct *unused);
242

243
244
static int slab_early_init = 1;

245
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
246

247
static void kmem_cache_node_init(struct kmem_cache_node *parent)
248
249
250
251
252
253
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
254
	parent->colour_next = 0;
255
256
257
258
259
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
260
261
262
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
263
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
264
265
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
266
267
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
268
269
270
271
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
272
273
274
275
276

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
277
278
279
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
280
 *
Adrian Bunk's avatar
Adrian Bunk committed
281
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
282
283
 * which could lock up otherwise freeable slabs.
 */
284
285
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
286
287
288
289
290
291

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
292
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
293
294
295
296
297
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
298
299
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
300
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
301
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
302
303
304
305
306
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
307
308
309
310
311
312
313
314
315
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
316
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
317
318
319
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
320
#define	STATS_INC_NODEFREES(x)	do { } while (0)
321
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
322
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
323
324
325
326
327
328
329
330
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
331
332
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
333
 * 0		: objp
334
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
335
336
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
337
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
338
 * 		redzone word.
339
 * cachep->obj_offset: The real object.
340
341
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
342
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
343
 */
344
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
345
{
346
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
347
348
}

349
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
350
351
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
352
353
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
354
355
}

356
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
357
358
359
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
360
		return (unsigned long long *)(objp + cachep->size -
361
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
362
					      REDZONE_ALIGN);
363
	return (unsigned long long *) (objp + cachep->size -
364
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
365
366
}

367
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
368
369
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
370
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
371
372
373
374
}

#else

375
#define obj_offset(x)			0
376
377
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
378
379
380
381
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

382
383
#ifdef CONFIG_DEBUG_SLAB_LEAK

384
static inline bool is_store_user_clean(struct kmem_cache *cachep)
385
{
386
387
	return atomic_read(&cachep->store_user_clean) == 1;
}
388

389
390
391
392
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
393

394
395
396
397
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
398
399
400
}

#else
401
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
402
403
404

#endif

Linus Torvalds's avatar
Linus Torvalds committed
405
/*
406
407
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
408
 */
409
410
411
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
412
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
413

414
415
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
416
	struct page *page = virt_to_head_page(obj);
417
	return page->slab_cache;
418
419
}

420
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
421
422
				 unsigned int idx)
{
423
	return page->s_mem + cache->size * idx;
424
425
}

426
/*
427
428
429
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
430
431
432
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
433
					const struct page *page, void *obj)
434
{
435
	u32 offset = (obj - page->s_mem);
436
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
437
438
}

439
#define BOOT_CPUCACHE_ENTRIES	1
Linus Torvalds's avatar
Linus Torvalds committed
440
/* internal cache of cache description objs */
441
static struct kmem_cache kmem_cache_boot = {
442
443
444
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
445
	.size = sizeof(struct kmem_cache),
446
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
447
448
};

449
450
#define BAD_ALIEN_MAGIC 0x01020304ul

451
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
452

453
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
454
{
455
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
456
457
}

Andrew Morton's avatar
Andrew Morton committed
458
459
460
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
461
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
462
		unsigned long flags, size_t *left_over, unsigned int *num)
463
464
{
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
465

466
467
468
469
470
471
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
472
473
474
475
476
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
477
478
479
480
481
482
483
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
484
485
		*num = slab_size / buffer_size;
		*left_over = slab_size % buffer_size;
486
	} else {
487
488
489
		*num = slab_size / (buffer_size + sizeof(freelist_idx_t));
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
490
	}
Linus Torvalds's avatar
Linus Torvalds committed
491
492
}

493
#if DEBUG
494
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
495

Andrew Morton's avatar
Andrew Morton committed
496
497
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
498
499
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
500
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
501
	dump_stack();
502
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
503
}
504
#endif
Linus Torvalds's avatar
Linus Torvalds committed
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

522
523
524
525
526
527
528
529
530
531
532
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

533
534
535
536
537
538
539
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
540
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
541
542
543
544
545

static void init_reap_node(int cpu)
{
	int node;

546
	node = next_node(cpu_to_mem(cpu), node_online_map);
547
	if (node == MAX_NUMNODES)
548
		node = first_node(node_online_map);
549

550
	per_cpu(slab_reap_node, cpu) = node;
551
552
553
554
}

static void next_reap_node(void)
{
555
	int node = __this_cpu_read(slab_reap_node);
556
557
558
559

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
560
	__this_cpu_write(slab_reap_node, node);
561
562
563
564
565
566
567
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
568
569
570
571
572
573
574
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
575
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
576
{
577
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
578
579
580
581
582
583

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
584
	if (keventd_up() && reap_work->work.func == NULL) {
585
		init_reap_node(cpu);
586
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
587
588
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
589
590
591
	}
}

592
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
593
{
594
595
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
596
	 * However, when such objects are allocated or transferred to another
597
598
599
600
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
601
602
603
604
605
606
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
607
	}
608
609
610
611
612
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
613
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
614
615
616
617
618
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
619
620
}

621
static inline bool is_slab_pfmemalloc(struct page *page)
622
623
624
625
626
627
628
629
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
630
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
631
	struct page *page;
632
633
634
635
636
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

637
	spin_lock_irqsave(&n->list_lock, flags);
638
639
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
640
641
			goto out;

642
643
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
644
645
			goto out;

646
647
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
648
649
650
651
			goto out;

	pfmemalloc_active = false;
out:
652
	spin_unlock_irqrestore(&n->list_lock, flags);
653
654
}

655
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
656
657
658
659
660
661
662
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
663
		struct kmem_cache_node *n;
664
665
666
667
668
669
670

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
671
		for (i = 0; i < ac->avail; i++) {
672
673
674
675
676
677
678
679
680
681
682
683
684
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
685
		n = get_node(cachep, numa_mem_id());
686
		if (!list_empty(&n->slabs_free) && force_refill) {
687
			struct page *page = virt_to_head_page(objp);
688
			ClearPageSlabPfmemalloc(page);
689
690
691
692
693
694
695
696
697
698
699
700
701
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

702
703
704
705
706
707
708
709
710
711
712
713
714
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

Joonsoo Kim's avatar
Joonsoo Kim committed
715
716
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
717
718
719
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
720
		struct page *page = virt_to_head_page(objp);
721
722
723
724
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

725
726
727
728
729
730
731
732
733
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

734
735
736
	ac->entry[ac->avail++] = objp;
}

737
738
739
740
741
742
743
744
745
746
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
747
	int nr = min3(from->avail, max, to->limit - to->avail);
748
749
750
751
752
753
754
755
756
757
758
759

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

760
761
762
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
763
#define reap_alien(cachep, n) do { } while (0)
764

Joonsoo Kim's avatar
Joonsoo Kim committed
765
766
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
767
{
768
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
769
770
}

Joonsoo Kim's avatar
Joonsoo Kim committed
771
static inline void free_alien_cache(struct alien_cache **ac_ptr)
772
773
774
775
776
777
778
779
780
781
782
783
784
785
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

786
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
787
788
789
790
791
		 gfp_t flags, int nodeid)
{
	return NULL;
}

David Rientjes's avatar
David Rientjes committed
792
793
794
795
796
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

797
798
#else	/* CONFIG_NUMA */

799
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
800
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
801

Joonsoo Kim's avatar
Joonsoo Kim committed
802
803
804
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
805
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
806
807
808
809
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
810
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
811
812
813
814
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
815
{
Joonsoo Kim's avatar
Joonsoo Kim committed
816
	struct alien_cache **alc_ptr;
817
	size_t memsize = sizeof(void *) * nr_node_ids;
818
819
820
821
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
822
823
824
825
826
827
828
829
830
831
832
833
834
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
835
836
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
837
	return alc_ptr;
838
839
}

Joonsoo Kim's avatar
Joonsoo Kim committed
840
static void free_alien_cache(struct alien_cache **alc_ptr)
841
842
843
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
844
	if (!alc_ptr)
845
846
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
847
848
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
849
850
}

851
static void __drain_alien_cache(struct kmem_cache *cachep,
852
853
				struct array_cache *ac, int node,
				struct list_head *list)
854
{
855
	struct kmem_cache_node *n = get_node(cachep, node);
856
857

	if (ac->avail) {
858
		spin_lock(&n->list_lock);
859
860
861
862
863
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
864
865
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
866

867
		free_block(cachep, ac->entry, ac->avail, node, list);
868
		ac->avail = 0;
869
		spin_unlock(&n->list_lock);
870
871
872
	}
}

873
874
875
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
876
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
877
{
878
	int node = __this_cpu_read(slab_reap_node);
879

880
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
881
882
883
884
885
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
886
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
887
888
889
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
890
				spin_unlock_irq(&alc->lock);
891
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
892
			}
893
894
895
896
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
897
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
898
				struct alien_cache **alien)
899
{
900
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
901
	struct alien_cache *alc;
902
903
904
905
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
906
907
		alc = alien[i];
		if (alc) {
908
909
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
910
			ac = &alc->ac;
911
			spin_lock_irqsave(&alc->lock, flags);
912
			__drain_alien_cache(cachep, ac, i, &list);
913
			spin_unlock_irqrestore(&alc->lock, flags);
914
			slabs_destroy(cachep, &list);
915
916
917
		}
	}
}
918

919
920
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
921
{
922
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
923
924
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
925
	LIST_HEAD(list);
926

927
	n = get_node(cachep, node);
928
	STATS_INC_NODEFREES(cachep);
929
930
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
931
		ac = &alien->ac;
932
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
933
		if (unlikely(ac->avail == ac->limit)) {
934
			STATS_INC_ACOVERFLOW(cachep);
935
			__drain_alien_cache(cachep, ac, page_node, &list);
936
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
937
		ac_put_obj(cachep, ac, objp);
938
		spin_unlock(&alien->lock);
939
		slabs_destroy(cachep, &list);
940
	} else {
941
		n = get_node(cachep, page_node);
942
		spin_lock(&n->list_lock);
943
		free_block(cachep, &objp, 1, page_node, &list);
944
		spin_unlock(&n->list_lock);
945
		slabs_destroy(cachep, &list);
946
947
948
	}
	return 1;
}
949
950
951
952
953
954
955
956
957
958
959
960
961
962

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
David Rientjes's avatar
David Rientjes committed
963
964

/*
965
966
 * Construct gfp mask to allocate from a specific node but do not direct reclaim
 * or warn about failures. kswapd may still wake to reclaim in the background.
David Rientjes's avatar
David Rientjes committed
967
968
969
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
970
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
David Rientjes's avatar
David Rientjes committed
971
}
972
973
#endif

974
/*
975
 * Allocates and initializes node for a node on each slab cache, used for
976
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
977
 * will be allocated off-node since memory is not yet online for the new node.
978
 * When hotplugging memory or a cpu, existing node are not replaced if
979
980
 * already in use.
 *
981
 * Must hold slab_mutex.
982
 */
983
static int init_cache_node_node(int node)
984
985
{
	struct kmem_cache *cachep;
986
	struct kmem_cache_node *n;
987
	const size_t memsize = sizeof(struct kmem_cache_node);
988

989
	list_for_each_entry(cachep, &slab_caches, list) {
990
		/*
991
		 * Set up the kmem_cache_node for cpu before we can
992
993
994
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
995
996
		n = get_node(cachep, node);
		if (!n) {
997
998
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
999
				return -ENOMEM;
1000
			kmem_cache_node_init(n);
1001
1002
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1003
1004

			/*
1005
1006
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1007
1008
			 * protection here.
			 */
1009
			cachep->node[node] = n;
1010
1011
		}

1012
1013
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1014
1015
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1016
		spin_unlock_irq(&n->list_lock);
1017
1018
1019
1020
	}
	return 0;
}

1021
1022
1023
1024
1025
1026
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1027
static void cpuup_canceled(long cpu)
1028
1029
{
	struct kmem_cache *cachep;
1030
	struct kmem_cache_node *n = NULL;
1031
	int node = cpu_to_mem(cpu);
1032
	const struct cpumask *mask = cpumask_of_node(node);
1033

1034
	list_for_each_entry(cachep, &slab_caches, list) {
1035
1036
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
1037
		struct alien_cache **alien;
1038
		LIST_HEAD(list);
1039

1040
		n = get_node(cachep, node);
1041
		if (!n)
1042
			continue;
1043

1044
		spin_lock_irq(&n->list_lock);
1045

1046
1047
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1048
1049
1050
1051

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1052
			free_block(cachep, nc->entry, nc->avail, node, &list);
1053
1054
			nc->avail = 0;
		}
1055

1056
		if (!cpumask_empty(mask)) {
1057
			spin_unlock_irq(&n->list_lock);
1058
			goto free_slab;
1059
1060
		}

1061
		shared = n->shared;
1062
1063
		if (shared) {
			free_block(cachep, shared->entry,
1064
				   shared->avail, node, &list);
1065
			n->shared = NULL;
1066
1067
		}

1068
1069
		alien = n->alien;
		n->alien = NULL;
1070