slab.c 108 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171
172
173
174
175
176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
195
196
197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198
199
200
201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
202
			 */
Linus Torvalds's avatar
Linus Torvalds committed
203
204
};

Joonsoo Kim's avatar
Joonsoo Kim committed
205
206
207
208
209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
227
228
229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
230
231
232
233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
235
236
};

237
238
239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_NODE (MAX_NUMNODES)
244

245
static int drain_freelist(struct kmem_cache *cache,
246
			struct kmem_cache_node *n, int tofree);
247
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248
249
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251
static void cache_reap(struct work_struct *unused);
252

253
254
static int slab_early_init = 1;

255
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
256

257
static void kmem_cache_node_init(struct kmem_cache_node *parent)
258
259
260
261
262
263
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
264
	parent->colour_next = 0;
265
266
267
268
269
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
270
271
272
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
273
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274
275
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
276
277
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
278
279
280
281
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
282
283
284

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285
#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
Linus Torvalds's avatar
Linus Torvalds committed
286
287

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
288
289
290
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
291
 *
Adrian Bunk's avatar
Adrian Bunk committed
292
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
293
294
 * which could lock up otherwise freeable slabs.
 */
295
296
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
297
298
299
300
301
302

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
303
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
304
305
306
307
308
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
309
310
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
311
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
312
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
313
314
315
316
317
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
318
319
320
321
322
323
324
325
326
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
327
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
328
329
330
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
331
#define	STATS_INC_NODEFREES(x)	do { } while (0)
332
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
333
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
334
335
336
337
338
339
340
341
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
342
343
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
344
 * 0		: objp
345
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
346
347
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
348
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
349
 * 		redzone word.
350
 * cachep->obj_offset: The real object.
351
352
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
353
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
354
 */
355
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
356
{
357
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
358
359
}

360
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
361
362
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
363
364
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
365
366
}

367
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
368
369
370
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
371
		return (unsigned long long *)(objp + cachep->size -
372
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
373
					      REDZONE_ALIGN);
374
	return (unsigned long long *) (objp + cachep->size -
375
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
376
377
}

378
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
379
380
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
381
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
382
383
384
385
}

#else

386
#define obj_offset(x)			0
387
388
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
389
390
391
392
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

Linus Torvalds's avatar
Linus Torvalds committed
426
/*
427
428
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
429
 */
430
431
432
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
433
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
434

435
436
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
437
	struct page *page = virt_to_head_page(obj);
438
	return page->slab_cache;
439
440
}

441
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
442
443
				 unsigned int idx)
{
444
	return page->s_mem + cache->size * idx;
445
446
}

447
/*
448
449
450
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
451
452
453
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
454
					const struct page *page, void *obj)
455
{
456
	u32 offset = (obj - page->s_mem);
457
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
458
459
}

Linus Torvalds's avatar
Linus Torvalds committed
460
/* internal cache of cache description objs */
461
static struct kmem_cache kmem_cache_boot = {
462
463
464
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
465
	.size = sizeof(struct kmem_cache),
466
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
467
468
};

469
470
#define BAD_ALIEN_MAGIC 0x01020304ul

471
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
472

473
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
474
{
475
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
476
477
}

478
479
480
481
482
483
484
485
486
487
488
489
490
491
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

492
493
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
494
{
495
	int nr_objs;
496
	size_t remained_size;
497
	size_t freelist_size;
498
	int extra_space = 0;
499

500
501
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
502
503
504
505
506
507
508
509
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
510
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
511
512
513
514
515

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
516
517
518
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
519
520
521
		nr_objs--;

	return nr_objs;
522
}
Linus Torvalds's avatar
Linus Torvalds committed
523

Andrew Morton's avatar
Andrew Morton committed
524
525
526
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
527
528
529
530
531
532
533
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
534

535
536
537
538
539
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
Joonsoo Kim's avatar
Joonsoo Kim committed
540
	 * - One freelist_idx_t for each object
541
542
543
544
545
546
547
548
549
550
551
552
553
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
554
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
555
					sizeof(freelist_idx_t), align);
556
		mgmt_size = calculate_freelist_size(nr_objs, align);
557
558
559
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
560
561
}

562
#if DEBUG
563
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
564

Andrew Morton's avatar
Andrew Morton committed
565
566
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
567
568
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
569
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
570
	dump_stack();
571
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
572
}
573
#endif
Linus Torvalds's avatar
Linus Torvalds committed
574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

591
592
593
594
595
596
597
598
599
600
601
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

602
603
604
605
606
607
608
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
609
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
610
611
612
613
614

static void init_reap_node(int cpu)
{
	int node;

615
	node = next_node(cpu_to_mem(cpu), node_online_map);
616
	if (node == MAX_NUMNODES)
617
		node = first_node(node_online_map);
618

619
	per_cpu(slab_reap_node, cpu) = node;
620
621
622
623
}

static void next_reap_node(void)
{
624
	int node = __this_cpu_read(slab_reap_node);
625
626
627
628

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
629
	__this_cpu_write(slab_reap_node, node);
630
631
632
633
634
635
636
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
637
638
639
640
641
642
643
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
644
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
645
{
646
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
647
648
649
650
651
652

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
653
	if (keventd_up() && reap_work->work.func == NULL) {
654
		init_reap_node(cpu);
655
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
656
657
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
658
659
660
	}
}

661
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
662
{
663
664
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
665
	 * However, when such objects are allocated or transferred to another
666
667
668
669
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
670
671
672
673
674
675
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
676
	}
677
678
679
680
681
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
682
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
683
684
685
686
687
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
688
689
}

690
static inline bool is_slab_pfmemalloc(struct page *page)
691
692
693
694
695
696
697
698
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
699
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
700
	struct page *page;
701
702
703
704
705
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

706
	spin_lock_irqsave(&n->list_lock, flags);
707
708
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
709
710
			goto out;

711
712
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
713
714
			goto out;

715
716
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
717
718
719
720
			goto out;

	pfmemalloc_active = false;
out:
721
	spin_unlock_irqrestore(&n->list_lock, flags);
722
723
}

724
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
725
726
727
728
729
730
731
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
732
		struct kmem_cache_node *n;
733
734
735
736
737
738
739

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
740
		for (i = 0; i < ac->avail; i++) {
741
742
743
744
745
746
747
748
749
750
751
752
753
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
754
		n = get_node(cachep, numa_mem_id());
755
		if (!list_empty(&n->slabs_free) && force_refill) {
756
			struct page *page = virt_to_head_page(objp);
757
			ClearPageSlabPfmemalloc(page);
758
759
760
761
762
763
764
765
766
767
768
769
770
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

771
772
773
774
775
776
777
778
779
780
781
782
783
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

Joonsoo Kim's avatar
Joonsoo Kim committed
784
785
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
786
787
788
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
789
		struct page *page = virt_to_head_page(objp);
790
791
792
793
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

794
795
796
797
798
799
800
801
802
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

803
804
805
	ac->entry[ac->avail++] = objp;
}

806
807
808
809
810
811
812
813
814
815
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
816
	int nr = min3(from->avail, max, to->limit - to->avail);
817
818
819
820
821
822
823
824
825
826
827
828

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

829
830
831
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
832
#define reap_alien(cachep, n) do { } while (0)
833

Joonsoo Kim's avatar
Joonsoo Kim committed
834
835
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
836
{
837
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
838
839
}

Joonsoo Kim's avatar
Joonsoo Kim committed
840
static inline void free_alien_cache(struct alien_cache **ac_ptr)
841
842
843
844
845
846
847
848
849
850
851
852
853
854
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

855
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
856
857
858
859
860
		 gfp_t flags, int nodeid)
{
	return NULL;
}

David Rientjes's avatar
David Rientjes committed
861
862
863
864
865
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

866
867
#else	/* CONFIG_NUMA */

868
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
869
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
870

Joonsoo Kim's avatar
Joonsoo Kim committed
871
872
873
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
874
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
875
876
877
878
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
879
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
880
881
882
883
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
884
{
Joonsoo Kim's avatar
Joonsoo Kim committed
885
	struct alien_cache **alc_ptr;
886
	size_t memsize = sizeof(void *) * nr_node_ids;
887
888
889
890
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
891
892
893
894
895
896
897
898
899
900
901
902
903
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
904
905
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
906
	return alc_ptr;
907
908
}

Joonsoo Kim's avatar
Joonsoo Kim committed
909
static void free_alien_cache(struct alien_cache **alc_ptr)
910
911
912
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
913
	if (!alc_ptr)
914
915
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
916
917
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
918
919
}

920
static void __drain_alien_cache(struct kmem_cache *cachep,
921
922
				struct array_cache *ac, int node,
				struct list_head *list)
923
{
924
	struct kmem_cache_node *n = get_node(cachep, node);
925
926

	if (ac->avail) {
927
		spin_lock(&n->list_lock);
928
929
930
931
932
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
933
934
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
935

936
		free_block(cachep, ac->entry, ac->avail, node, list);
937
		ac->avail = 0;
938
		spin_unlock(&n->list_lock);
939
940
941
	}
}

942
943
944
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
945
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
946
{
947
	int node = __this_cpu_read(slab_reap_node);
948

949
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
950
951
952
953
954
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
955
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
956
957
958
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
959
				spin_unlock_irq(&alc->lock);
960
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
961
			}
962
963
964
965
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
966
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
967
				struct alien_cache **alien)
968
{
969
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
970
	struct alien_cache *alc;
971
972
973
974
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
975
976
		alc = alien[i];
		if (alc) {
977
978
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
979
			ac = &alc->ac;
980
			spin_lock_irqsave(&alc->lock, flags);
981
			__drain_alien_cache(cachep, ac, i, &list);
982
			spin_unlock_irqrestore(&alc->lock, flags);
983
			slabs_destroy(cachep, &list);
984
985
986
		}
	}
}
987

988
989
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
990
{
991
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
992
993
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
994
	LIST_HEAD(list);
995

996
	n = get_node(cachep, node);
997
	STATS_INC_NODEFREES(cachep);
998
999
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
1000
		ac = &alien->ac;
1001
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
1002
		if (unlikely(ac->avail == ac->limit)) {
1003
			STATS_INC_ACOVERFLOW(cachep);
1004
			__drain_alien_cache(cachep, ac, page_node, &list);
1005
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
1006
		ac_put_obj(cachep, ac, objp);
1007
		spin_unlock(&alien->lock);
1008
		slabs_destroy(cachep, &list);
1009
	} else {
1010
		n = get_node(cachep, page_node);
1011
		spin_lock(&n->list_lock);
1012
		free_block(cachep, &objp, 1, page_node, &list);
1013
		spin_unlock(&n->list_lock);
1014
		slabs_destroy(cachep, &list);
1015
1016
1017
	}
	return 1;
}
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
David Rientjes's avatar
David Rientjes committed
1032
1033

/*
1034
1035
 * Construct gfp mask to allocate from a specific node but do not direct reclaim
 * or warn about failures. kswapd may still wake to reclaim in the background.
David Rientjes's avatar
David Rientjes committed
1036
1037
1038
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
1039
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
David Rientjes's avatar
David Rientjes committed
1040
}
1041
1042
#endif

1043
/*
1044
 * Allocates and initializes node for a node on each slab cache, used for
1045
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1046
 * will be allocated off-node since memory is not yet online for the new node.
1047
 * When hotplugging memory or a cpu, existing node are not replaced if
1048
1049
 * already in use.
 *
1050
 * Must hold slab_mutex.
1051
 */
1052
static int init_cache_node_node(int node)
1053
1054
{
	struct kmem_cache *cachep;
1055
	struct kmem_cache_node *n;
1056
	const size_t memsize = sizeof(struct kmem_cache_node);
1057

1058
	list_for_each_entry(cachep, &slab_caches, list) {
1059
		/*
1060
		 * Set up the kmem_cache_node for cpu before we can
1061
1062
1063
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1064
1065
		n = get_node(cachep, node);
		if (!n) {
1066
1067
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1068
				return -ENOMEM;
1069
			kmem_cache_node_init(n);
1070
1071
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1072
1073

			/*
1074
1075
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1076
1077
			 * protection here.
			 */
1078
			cachep->node[node] = n;
1079
1080
		}

1081
1082
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1083
1084
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1085
		spin_unlock_irq(&n->list_lock);
1086
1087
1088
1089
	}
	return 0;
}

1090
1091
1092
1093
1094
1095
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1096
static void cpuup_canceled(long cpu)
1097
1098
{
	struct kmem_cache *cachep;
1099
	struct kmem_cache_node *n = NULL;
1100
	int node = cpu_to_mem(cpu);
1101
	const struct cpumask *mask = cpumask_of_node(node);
1102

1103
	list_for_each_entry(cachep, &slab_caches, list) {
1104
1105
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
1106
		struct alien_cache **alien;
1107
		LIST_HEAD(list);
1108

1109
		n = get_node(cachep, node);
1110
		if (!n)
1111
			continue;
1112

1113
		spin_lock_irq(&n->list_lock);