slab.c 113 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
Ingo Molnar's avatar
Ingo Molnar committed
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
Linus Torvalds's avatar
Linus Torvalds committed
98
99
100
101
102
103
104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
108
#include	<linux/mutex.h>
Ingo Molnar's avatar
Ingo Molnar committed
109
#include	<linux/rtmutex.h>
Linus Torvalds's avatar
Linus Torvalds committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
176
177
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds's avatar
Linus Torvalds committed
179
#else
180
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
Linus Torvalds's avatar
Linus Torvalds committed
181
182
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds's avatar
Linus Torvalds committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

205
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
206
207
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
208
209
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
210
211
212
213
214
215
216
217
218

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
219
220
221
222
223
224
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
Linus Torvalds's avatar
Linus Torvalds committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
244
	struct rcu_head head;
245
	struct kmem_cache *cachep;
246
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
266
	spinlock_t lock;
Andrew Morton's avatar
Andrew Morton committed
267
268
269
270
271
272
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
Linus Torvalds's avatar
Linus Torvalds committed
273
274
};

Andrew Morton's avatar
Andrew Morton committed
275
276
277
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
278
279
280
281
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
282
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
283
284
285
};

/*
286
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
287
288
 */
struct kmem_list3 {
289
290
291
292
293
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
294
	unsigned int colour_next;	/* Per-node cache coloring */
295
296
297
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
298
299
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
300
301
};

302
303
304
305
306
307
308
309
310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

311
312
313
314
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
315
static int enable_cpucache(struct kmem_cache *cachep);
316
static void cache_reap(struct work_struct *unused);
317

318
/*
Andrew Morton's avatar
Andrew Morton committed
319
320
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
321
 */
322
static __always_inline int index_of(const size_t size)
323
{
324
325
	extern void __bad_size(void);

326
327
328
329
330
331
332
333
334
335
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
336
		__bad_size();
337
	} else
338
		__bad_size();
339
340
341
	return 0;
}

342
343
static int slab_early_init = 1;

344
345
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
346

Pekka Enberg's avatar
Pekka Enberg committed
347
static void kmem_list3_init(struct kmem_list3 *parent)
348
349
350
351
352
353
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
354
	parent->colour_next = 0;
355
356
357
358
359
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
360
361
362
363
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
364
365
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
366
367
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
368
369
370
371
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
372
373

/*
374
 * struct kmem_cache
Linus Torvalds's avatar
Linus Torvalds committed
375
376
377
 *
 * manages a cache.
 */
378

379
struct kmem_cache {
Linus Torvalds's avatar
Linus Torvalds committed
380
/* 1) per-cpu data, touched during every alloc/free */
381
	struct array_cache *array[NR_CPUS];
382
/* 2) Cache tunables. Protected by cache_chain_mutex */
383
384
385
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
386

387
	unsigned int buffer_size;
388
/* 3) touched by every alloc & free from the backend */
389
	struct kmem_list3 *nodelists[MAX_NUMNODES];
390

Andrew Morton's avatar
Andrew Morton committed
391
392
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
Linus Torvalds's avatar
Linus Torvalds committed
393

394
/* 4) cache_grow/shrink */
Linus Torvalds's avatar
Linus Torvalds committed
395
	/* order of pgs per slab (2^n) */
396
	unsigned int gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
397
398

	/* force GFP flags, e.g. GFP_DMA */
399
	gfp_t gfpflags;
Linus Torvalds's avatar
Linus Torvalds committed
400

Andrew Morton's avatar
Andrew Morton committed
401
	size_t colour;			/* cache colouring range */
402
	unsigned int colour_off;	/* colour offset */
403
	struct kmem_cache *slabp_cache;
404
	unsigned int slab_size;
Andrew Morton's avatar
Andrew Morton committed
405
	unsigned int dflags;		/* dynamic flags */
Linus Torvalds's avatar
Linus Torvalds committed
406
407

	/* constructor func */
408
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
409
410

	/* de-constructor func */
411
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
412

413
/* 5) cache creation/removal */
414
415
	const char *name;
	struct list_head next;
Linus Torvalds's avatar
Linus Torvalds committed
416

417
/* 6) statistics */
Linus Torvalds's avatar
Linus Torvalds committed
418
#if STATS
419
420
421
422
423
424
425
426
427
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
428
	unsigned long node_overflow;
429
430
431
432
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
Linus Torvalds's avatar
Linus Torvalds committed
433
434
#endif
#if DEBUG
435
436
437
438
439
440
441
442
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
443
444
445
446
447
448
449
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
450
451
452
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
453
 *
Adrian Bunk's avatar
Adrian Bunk committed
454
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
455
456
457
458
459
460
461
462
463
464
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
465
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
466
467
468
469
470
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
471
472
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
473
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
474
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
475
476
477
478
479
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
480
481
482
483
484
485
486
487
488
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
489
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
490
491
492
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
493
#define	STATS_INC_NODEFREES(x)	do { } while (0)
494
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
495
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
496
497
498
499
500
501
502
503
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
504
505
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
506
 * 0		: objp
507
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
508
509
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
510
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
511
 * 		redzone word.
512
513
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Morton's avatar
Andrew Morton committed
514
515
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
516
 */
517
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
518
{
519
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
520
521
}

522
static int obj_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
523
{
524
	return cachep->obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
525
526
}

527
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
528
529
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
531
532
}

533
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
534
535
536
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
537
		return (unsigned long *)(objp + cachep->buffer_size -
538
					 2 * BYTES_PER_WORD);
539
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
540
541
}

542
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
543
544
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
546
547
548
549
}

#else

550
551
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
Linus Torvalds's avatar
Linus Torvalds committed
552
553
554
555
556
557
558
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
Andrew Morton's avatar
Andrew Morton committed
559
560
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
Linus Torvalds's avatar
Linus Torvalds committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

Andrew Morton's avatar
Andrew Morton committed
580
581
582
583
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
Linus Torvalds's avatar
Linus Torvalds committed
584
 */
585
586
587
588
589
590
591
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
592
593
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
594
	BUG_ON(!PageSlab(page));
595
596
597
598
599
600
601
602
603
604
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
605
606
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
607
	BUG_ON(!PageSlab(page));
608
609
	return (struct slab *)page->lru.prev;
}
Linus Torvalds's avatar
Linus Torvalds committed
610

611
612
613
614
615
616
617
618
619
620
621
622
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

623
624
625
626
627
628
629
630
631
632
633
634
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

Andrew Morton's avatar
Andrew Morton committed
635
636
637
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
655
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
656
657
658
659
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
660
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
661
static struct arraycache_init initarray_generic =
662
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
663
664

/* internal cache of cache description objs */
665
static struct kmem_cache cache_cache = {
666
667
668
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
669
	.buffer_size = sizeof(struct kmem_cache),
670
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
671
#if DEBUG
672
	.obj_size = sizeof(struct kmem_cache),
Linus Torvalds's avatar
Linus Torvalds committed
673
674
675
#endif
};

676
677
#define BAD_ALIEN_MAGIC 0x01020304ul

678
679
680
681
682
683
684
685
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
686
687
688
689
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
690
 */
691
692
693
694
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
695
696
697

{
	int q;
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
725
726
727
	}
}
#else
728
static inline void init_lock_keys(void)
729
730
731
732
{
}
#endif

733
734
735
736
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
Ingo Molnar's avatar
Ingo Molnar committed
737
static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
738
739
740
741
742
743
744
745
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
746
747
	PARTIAL_AC,
	PARTIAL_L3,
Linus Torvalds's avatar
Linus Torvalds committed
748
749
750
	FULL
} g_cpucache_up;

751
752
753
754
755
756
757
758
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

759
static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
760

761
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
762
763
764
765
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
766
767
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
768
769
770
771
772
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
773
774
775
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
776
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
777
778
779
780
781
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
782
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
783
784
785
786
787
788
789
790
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

791
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
792
793
794
795
{
	return __find_general_cachep(size, gfpflags);
}

796
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
797
{
798
799
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
800

Andrew Morton's avatar
Andrew Morton committed
801
802
803
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
804
805
806
807
808
809
810
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
811

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
860
861
862
863
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

Andrew Morton's avatar
Andrew Morton committed
864
865
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
866
867
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
868
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
869
870
871
	dump_stack();
}

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
903
		node = first_node(node_online_map);
904

905
	per_cpu(reap_node, cpu) = node;
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
929
930
931
932
933
934
935
936
937
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
938
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
939
940
941
942
943
944

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
945
	if (keventd_up() && reap_work->work.func == NULL) {
946
		init_reap_node(cpu);
947
		INIT_DELAYED_WORK(reap_work, cache_reap);
Linus Torvalds's avatar
Linus Torvalds committed
948
949
950
951
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

952
static struct array_cache *alloc_arraycache(int node, int entries,
953
					    int batchcount)
Linus Torvalds's avatar
Linus Torvalds committed
954
{
955
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
956
957
	struct array_cache *nc = NULL;

958
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds's avatar
Linus Torvalds committed
959
960
961
962
963
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
964
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
965
966
967
968
	}
	return nc;
}

969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1018
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1019
1020
1021
1022
1023
1024
1025
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1026
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1027
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1028

Pekka Enberg's avatar
Pekka Enberg committed
1029
static struct array_cache **alloc_alien_cache(int node, int limit)
1030
1031
{
	struct array_cache **ac_ptr;
1032
	int memsize = sizeof(void *) * MAX_NUMNODES;
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
1046
				for (i--; i <= 0; i--)
1047
1048
1049
1050
1051
1052
1053
1054
1055
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
1056
static void free_alien_cache(struct array_cache **ac_ptr)
1057
1058
1059
1060
1061
1062
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
1063
	    kfree(ac_ptr[i]);
1064
1065
1066
	kfree(ac_ptr);
}

1067
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1068
				struct array_cache *ac, int node)
1069
1070
1071
1072
1073
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1074
1075
1076
1077
1078
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1079
1080
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1081

1082
		free_block(cachep, ac->entry, ac->avail, node);
1083
1084
1085
1086
1087
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1088
1089
1090
1091
1092
1093
1094
1095
1096
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1097
1098

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1099
1100
1101
1102
1103
1104
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1105
1106
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1107
{
1108
	int i = 0;
1109
1110
1111
1112
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1113
		ac = alien[i];
1114
1115
1116
1117
1118
1119
1120
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1121

1122
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1123
1124
1125
1126
1127
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
1128
1129
1130
	int node;

	node = numa_node_id();
1131
1132
1133
1134
1135

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1136
	if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1137
1138
		return 0;

1139
	l3 = cachep->nodelists[node];
1140
1141
1142
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1143
		spin_lock(&alien->lock);
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1157
1158
#endif

1159
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1160
				    unsigned long action, void *hcpu)
Linus Torvalds's avatar
Linus Torvalds committed
1161
1162
{
	long cpu = (long)hcpu;
1163
	struct kmem_cache *cachep;
1164
1165
1166
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
Linus Torvalds's avatar
Linus Torvalds committed
1167
1168
1169

	switch (action) {
	case CPU_UP_PREPARE:
Ingo Molnar's avatar
Ingo Molnar committed
1170
		mutex_lock(&cache_chain_mutex);
Andrew Morton's avatar
Andrew Morton committed
1171
1172
		/*
		 * We need to do this right in the beginning since
1173
1174
1175
1176
1177
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

Linus Torvalds's avatar
Linus Torvalds committed
1178
		list_for_each_entry(cachep, &cache_chain, next) {
Andrew Morton's avatar
Andrew Morton committed
1179
1180
			/*
			 * Set up the size64 kmemlist for cpu before we can
1181
1182
1183
1184
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
Andrew Morton's avatar
Andrew Morton committed
1185
1186
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1187
1188
1189
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1190
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191

1192
1193
1194
1195
1196
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1197
1198
				cachep->nodelists[node] = l3;
			}
Linus Torvalds's avatar
Linus Torvalds committed
1199

1200
1201
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
Andrew Morton's avatar
Andrew Morton committed
1202
1203
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1204
1205
1206
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

Andrew Morton's avatar
Andrew Morton committed
1207
1208
1209
1210
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1211
		list_for_each_entry(cachep, &cache_chain, next) {
1212
			struct array_cache *nc;
1213
			struct array_cache *shared;
1214
			struct array_cache **alien = NULL;
1215

1216
			nc = alloc_arraycache(node, cachep->limit,
1217
						cachep->batchcount);
Linus Torvalds's avatar
Linus Torvalds committed
1218
1219
			if (!nc)
				goto bad;
1220
1221
1222
1223
1224
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1225

1226
1227
1228
1229
1230
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
Linus Torvalds's avatar
Linus Torvalds committed
1231
			cachep->array[cpu] = nc;
1232
1233
1234
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1235
1236
1237
1238
1239
1240
1241
1242
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1243
			}
1244
1245
1246
1247
1248
1249
1250
1251
1252
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
Linus Torvalds's avatar
Linus Torvalds committed
1253
1254
1255
		}
		break;
	case CPU_ONLINE:
1256
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1257
1258
1259
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1260
1261
1262
1263
1264
1265
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
Linus Torvalds's avatar
Linus Torvalds committed
1266
	case CPU_DEAD:
1267
1268
1269
1270
1271
1272
1273
1274
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
Linus Torvalds's avatar
Linus Torvalds committed
1275
		/* fall thru */
1276
#endif
Linus Torvalds's avatar
Linus Torvalds committed
1277
1278
1279
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1280
1281
			struct array_cache *shared;
			struct array_cache **alien;
1282
			cpumask_t mask;
Linus Torvalds's avatar
Linus Torvalds committed
1283

1284
			mask = node_to_cpumask(node);
Linus Torvalds's avatar
Linus Torvalds committed
1285
1286
1287
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1288
1289
1290
			l3 = cachep->nodelists[node];

			if (!l3)
1291
				goto free_array_cache;
1292

1293
			spin_lock_irq(&l3->list_lock);
1294
1295
1296
1297

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1298
				free_block(cachep, nc->entry, nc->avail, node);
1299
1300

			if (!cpus_empty(mask)) {
1301
				spin_unlock_irq(&l3->list_lock);
1302
				goto free_array_cache;
1303
			}
1304

1305
1306
			shared = l3->shared;
			if (shared) {
1307
				free_block(cachep, l3->shared->entry,
1308
					   l3->shared->avail, node);
1309
1310
1311
				l3->shared = NULL;
			}

1312
1313
1314
1315
1316
1317
1318
1319
1320
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1321
			}
1322
free_array_cache:
Linus Torvalds's avatar
Linus Torvalds committed
1323
1324
			kfree(nc);
		}
1325
1326
1327
1328
1329
1330
1331
1332
1333
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1334
			drain_freelist(cachep, l3, l3->free_objects);
1335
		}
Ingo Molnar's avatar
Ingo Molnar committed
1336
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1337
1338
1339
		break;
	}
	return NOTIFY_OK;
Andrew Morton's avatar
Andrew Morton committed
1340
bad:
Linus Torvalds's avatar
Linus Torvalds committed
1341
1342
1343
	return NOTIFY_BAD;
}

1344
1345
1346
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
Linus Torvalds's avatar
Linus Torvalds committed
1347

1348
1349
1350
/*
 * swap the static kmem_list3 with kmalloced memory
 */
Andrew Morton's avatar
Andrew Morton committed
1351
1352
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1353
1354
1355
1356
1357
1358
1359
1360
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1361
1362
1363
1364
1365
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1366
1367
1368
1369
1370
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

Andrew Morton's avatar
Andrew Morton committed
1371
1372
1373
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
Linus Torvalds's avatar
Linus Torvalds committed
1374
1375
1376
<