slab.c 108 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171
172
173
174
175
176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
195
196
197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198
199
200
201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
202
			 */
Linus Torvalds's avatar
Linus Torvalds committed
203
204
};

Joonsoo Kim's avatar
Joonsoo Kim committed
205
206
207
208
209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

227
228
229
/*
 * Need this for bootstrapping a per node allocator.
 */
230
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
231
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
232
#define	CACHE_CACHE 0
233
#define	SIZE_NODE (MAX_NUMNODES)
234

235
static int drain_freelist(struct kmem_cache *cache,
236
			struct kmem_cache_node *n, int tofree);
237
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
238
239
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
240
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
241
static void cache_reap(struct work_struct *unused);
242

243
244
static int slab_early_init = 1;

245
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
246

247
static void kmem_cache_node_init(struct kmem_cache_node *parent)
248
249
250
251
252
253
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
254
	parent->colour_next = 0;
255
256
257
258
259
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
260
261
262
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
263
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
264
265
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
266
267
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
268
269
270
271
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
272
273
274

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
275
#define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
Linus Torvalds's avatar
Linus Torvalds committed
276
277

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
278
279
280
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
281
 *
Adrian Bunk's avatar
Adrian Bunk committed
282
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
283
284
 * which could lock up otherwise freeable slabs.
 */
285
286
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
287
288
289
290
291
292

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
293
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
294
295
296
297
298
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
299
300
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
301
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
302
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
303
304
305
306
307
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
308
309
310
311
312
313
314
315
316
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
317
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
318
319
320
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
321
#define	STATS_INC_NODEFREES(x)	do { } while (0)
322
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
323
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
324
325
326
327
328
329
330
331
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
332
333
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
334
 * 0		: objp
335
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
336
337
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
338
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
339
 * 		redzone word.
340
 * cachep->obj_offset: The real object.
341
342
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
343
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
344
 */
345
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
346
{
347
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
348
349
}

350
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
351
352
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
353
354
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
355
356
}

357
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
358
359
360
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
361
		return (unsigned long long *)(objp + cachep->size -
362
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
363
					      REDZONE_ALIGN);
364
	return (unsigned long long *) (objp + cachep->size -
365
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
366
367
}

368
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
369
370
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
371
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
372
373
374
375
}

#else

376
#define obj_offset(x)			0
377
378
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
379
380
381
382
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

383
384
#ifdef CONFIG_DEBUG_SLAB_LEAK

385
static inline bool is_store_user_clean(struct kmem_cache *cachep)
386
{
387
388
	return atomic_read(&cachep->store_user_clean) == 1;
}
389

390
391
392
393
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
394

395
396
397
398
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
399
400
401
}

#else
402
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
403
404
405

#endif

Linus Torvalds's avatar
Linus Torvalds committed
406
/*
407
408
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
409
 */
410
411
412
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
413
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
414

415
416
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
417
	struct page *page = virt_to_head_page(obj);
418
	return page->slab_cache;
419
420
}

421
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
422
423
				 unsigned int idx)
{
424
	return page->s_mem + cache->size * idx;
425
426
}

427
/*
428
429
430
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
431
432
433
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
434
					const struct page *page, void *obj)
435
{
436
	u32 offset = (obj - page->s_mem);
437
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
438
439
}

440
#define BOOT_CPUCACHE_ENTRIES	1
Linus Torvalds's avatar
Linus Torvalds committed
441
/* internal cache of cache description objs */
442
static struct kmem_cache kmem_cache_boot = {
443
444
445
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
446
	.size = sizeof(struct kmem_cache),
447
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
448
449
};

450
451
#define BAD_ALIEN_MAGIC 0x01020304ul

452
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
453

454
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
455
{
456
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
457
458
}

459
460
461
462
463
464
465
466
467
468
469
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

470
471
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
472
{
473
	int nr_objs;
474
	size_t remained_size;
475
476
477
478
479
480
481
482
483
484
	size_t freelist_size;

	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
485
	nr_objs = slab_size / (buffer_size + idx_size);
486
487
488
489
490

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
491
492
493
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
494
495
496
		nr_objs--;

	return nr_objs;
497
}
Linus Torvalds's avatar
Linus Torvalds committed
498

Andrew Morton's avatar
Andrew Morton committed
499
500
501
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
502
503
504
505
506
507
508
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
509

510
511
512
513
514
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
Joonsoo Kim's avatar
Joonsoo Kim committed
515
	 * - One freelist_idx_t for each object
516
517
518
519
520
521
522
523
524
525
526
527
528
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
529
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
530
					sizeof(freelist_idx_t), align);
531
		mgmt_size = calculate_freelist_size(nr_objs, align);
532
533
534
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
535
536
}

537
#if DEBUG
538
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
539

Andrew Morton's avatar
Andrew Morton committed
540
541
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
542
543
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
544
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
545
	dump_stack();
546
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
547
}
548
#endif
Linus Torvalds's avatar
Linus Torvalds committed
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

566
567
568
569
570
571
572
573
574
575
576
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

577
578
579
580
581
582
583
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
584
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
585
586
587
588
589

static void init_reap_node(int cpu)
{
	int node;

590
	node = next_node(cpu_to_mem(cpu), node_online_map);
591
	if (node == MAX_NUMNODES)
592
		node = first_node(node_online_map);
593

594
	per_cpu(slab_reap_node, cpu) = node;
595
596
597
598
}

static void next_reap_node(void)
{
599
	int node = __this_cpu_read(slab_reap_node);
600
601
602
603

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
604
	__this_cpu_write(slab_reap_node, node);
605
606
607
608
609
610
611
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
612
613
614
615
616
617
618
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
619
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
620
{
621
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
622
623
624
625
626
627

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
628
	if (keventd_up() && reap_work->work.func == NULL) {
629
		init_reap_node(cpu);
630
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
631
632
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
633
634
635
	}
}

636
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
637
{
638
639
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
640
	 * However, when such objects are allocated or transferred to another
641
642
643
644
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
645
646
647
648
649
650
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
651
	}
652
653
654
655
656
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
657
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
658
659
660
661
662
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
663
664
}

665
static inline bool is_slab_pfmemalloc(struct page *page)
666
667
668
669
670
671
672
673
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
674
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
675
	struct page *page;
676
677
678
679
680
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

681
	spin_lock_irqsave(&n->list_lock, flags);
682
683
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
684
685
			goto out;

686
687
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
688
689
			goto out;

690
691
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
692
693
694
695
			goto out;

	pfmemalloc_active = false;
out:
696
	spin_unlock_irqrestore(&n->list_lock, flags);
697
698
}

699
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
700
701
702
703
704
705
706
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
707
		struct kmem_cache_node *n;
708
709
710
711
712
713
714

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
715
		for (i = 0; i < ac->avail; i++) {
716
717
718
719
720
721
722
723
724
725
726
727
728
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
729
		n = get_node(cachep, numa_mem_id());
730
		if (!list_empty(&n->slabs_free) && force_refill) {
731
			struct page *page = virt_to_head_page(objp);
732
			ClearPageSlabPfmemalloc(page);
733
734
735
736
737
738
739
740
741
742
743
744
745
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

746
747
748
749
750
751
752
753
754
755
756
757
758
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

Joonsoo Kim's avatar
Joonsoo Kim committed
759
760
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
761
762
763
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
764
		struct page *page = virt_to_head_page(objp);
765
766
767
768
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

769
770
771
772
773
774
775
776
777
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

778
779
780
	ac->entry[ac->avail++] = objp;
}

781
782
783
784
785
786
787
788
789
790
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
791
	int nr = min3(from->avail, max, to->limit - to->avail);
792
793
794
795
796
797
798
799
800
801
802
803

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

804
805
806
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
807
#define reap_alien(cachep, n) do { } while (0)
808

Joonsoo Kim's avatar
Joonsoo Kim committed
809
810
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
811
{
812
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
813
814
}

Joonsoo Kim's avatar
Joonsoo Kim committed
815
static inline void free_alien_cache(struct alien_cache **ac_ptr)
816
817
818
819
820
821
822
823
824
825
826
827
828
829
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

830
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
831
832
833
834
835
		 gfp_t flags, int nodeid)
{
	return NULL;
}

David Rientjes's avatar
David Rientjes committed
836
837
838
839
840
static inline gfp_t gfp_exact_node(gfp_t flags)
{
	return flags;
}

841
842
#else	/* CONFIG_NUMA */

843
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
844
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
845

Joonsoo Kim's avatar
Joonsoo Kim committed
846
847
848
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
849
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
850
851
852
853
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
854
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
855
856
857
858
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
859
{
Joonsoo Kim's avatar
Joonsoo Kim committed
860
	struct alien_cache **alc_ptr;
861
	size_t memsize = sizeof(void *) * nr_node_ids;
862
863
864
865
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
866
867
868
869
870
871
872
873
874
875
876
877
878
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
879
880
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
881
	return alc_ptr;
882
883
}

Joonsoo Kim's avatar
Joonsoo Kim committed
884
static void free_alien_cache(struct alien_cache **alc_ptr)
885
886
887
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
888
	if (!alc_ptr)
889
890
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
891
892
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
893
894
}

895
static void __drain_alien_cache(struct kmem_cache *cachep,
896
897
				struct array_cache *ac, int node,
				struct list_head *list)
898
{
899
	struct kmem_cache_node *n = get_node(cachep, node);
900
901

	if (ac->avail) {
902
		spin_lock(&n->list_lock);
903
904
905
906
907
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
908
909
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
910

911
		free_block(cachep, ac->entry, ac->avail, node, list);
912
		ac->avail = 0;
913
		spin_unlock(&n->list_lock);
914
915
916
	}
}

917
918
919
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
920
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
921
{
922
	int node = __this_cpu_read(slab_reap_node);
923

924
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
925
926
927
928
929
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
930
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
931
932
933
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
934
				spin_unlock_irq(&alc->lock);
935
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
936
			}
937
938
939
940
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
941
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
942
				struct alien_cache **alien)
943
{
944
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
945
	struct alien_cache *alc;
946
947
948
949
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
950
951
		alc = alien[i];
		if (alc) {
952
953
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
954
			ac = &alc->ac;
955
			spin_lock_irqsave(&alc->lock, flags);
956
			__drain_alien_cache(cachep, ac, i, &list);
957
			spin_unlock_irqrestore(&alc->lock, flags);
958
			slabs_destroy(cachep, &list);
959
960
961
		}
	}
}
962

963
964
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
965
{
966
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
967
968
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
969
	LIST_HEAD(list);
970

971
	n = get_node(cachep, node);
972
	STATS_INC_NODEFREES(cachep);
973
974
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
975
		ac = &alien->ac;
976
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
977
		if (unlikely(ac->avail == ac->limit)) {
978
			STATS_INC_ACOVERFLOW(cachep);
979
			__drain_alien_cache(cachep, ac, page_node, &list);
980
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
981
		ac_put_obj(cachep, ac, objp);
982
		spin_unlock(&alien->lock);
983
		slabs_destroy(cachep, &list);
984
	} else {
985
		n = get_node(cachep, page_node);
986
		spin_lock(&n->list_lock);
987
		free_block(cachep, &objp, 1, page_node, &list);
988
		spin_unlock(&n->list_lock);
989
		slabs_destroy(cachep, &list);
990
991
992
	}
	return 1;
}
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
David Rientjes's avatar
David Rientjes committed
1007
1008

/*
1009
1010
 * Construct gfp mask to allocate from a specific node but do not direct reclaim
 * or warn about failures. kswapd may still wake to reclaim in the background.
David Rientjes's avatar
David Rientjes committed
1011
1012
1013
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
1014
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
David Rientjes's avatar
David Rientjes committed
1015
}
1016
1017
#endif

1018
/*
1019
 * Allocates and initializes node for a node on each slab cache, used for
1020
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1021
 * will be allocated off-node since memory is not yet online for the new node.
1022
 * When hotplugging memory or a cpu, existing node are not replaced if
1023
1024
 * already in use.
 *
1025
 * Must hold slab_mutex.
1026
 */
1027
static int init_cache_node_node(int node)
1028
1029
{
	struct kmem_cache *cachep;
1030
	struct kmem_cache_node *n;
1031
	const size_t memsize = sizeof(struct kmem_cache_node);
1032

1033
	list_for_each_entry(cachep, &slab_caches, list) {
1034
		/*
1035
		 * Set up the kmem_cache_node for cpu before we can
1036
1037
1038
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1039
1040
		n = get_node(cachep, node);
		if (!n) {
1041
1042
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1043
				return -ENOMEM;
1044
			kmem_cache_node_init(n);
1045
1046
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1047
1048

			/*
1049
1050
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1051
1052
			 * protection here.
			 */
1053
			cachep->node[node] = n;
1054
1055
		}

1056
1057
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1058
1059
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1060
		spin_unlock_irq(&n->list_lock);
1061
1062
1063
1064
	}
	return 0;
}

1065
1066
1067
1068
1069
1070
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1071
static void cpuup_canceled(long cpu)
1072
1073
{
	struct kmem_cache *cachep;
1074
	struct kmem_cache_node *n = NULL;
1075
	int node = cpu_to_mem(cpu);
1076
	const struct cpumask *mask = cpumask_of_node(node);
1077

1078
	list_for_each_entry(cachep, &slab_caches, list) {
1079
1080
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
1081
		struct alien_cache **alien;
1082
		LIST_HEAD(list);
1083

1084
		n = get_node(cachep, node);
1085
		if (!n)
1086
			continue;
1087

1088
		spin_lock_irq(&n->list_lock);
1089

1090
1091
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;