slab.c 117 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
Ingo Molnar's avatar
Ingo Molnar committed
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
Linus Torvalds's avatar
Linus Torvalds committed
118
119
120
121
122
123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
124
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
145
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
146
147
148
149
150
151
152

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
153
# define CREATE_MASK	(SLAB_RED_ZONE | \
Linus Torvalds's avatar
Linus Torvalds committed
154
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
155
			 SLAB_CACHE_DMA | \
156
			 SLAB_STORE_USER | \
Linus Torvalds's avatar
Linus Torvalds committed
157
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
159
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
160
#else
161
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
162
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
163
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
165
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

187
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
188
189
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
190
191
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
208
	struct rcu_head head;
209
	struct kmem_cache *cachep;
210
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
211
212
};

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
251
	spinlock_t lock;
252
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
253
254
255
256
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
Linus Torvalds's avatar
Linus Torvalds committed
257
258
};

Andrew Morton's avatar
Andrew Morton committed
259
260
261
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
262
263
264
265
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
266
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
267
268
269
};

/*
270
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
271
272
 */
struct kmem_list3 {
273
274
275
276
277
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
278
	unsigned int colour_next;	/* Per-node cache coloring */
279
280
281
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
282
283
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
284
285
};

286
287
288
/*
 * Need this for bootstrapping a per node allocator.
 */
289
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
290
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
291
#define	CACHE_CACHE 0
292
293
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
294

295
296
297
298
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
299
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
300
static void cache_reap(struct work_struct *unused);
301

302
/*
Andrew Morton's avatar
Andrew Morton committed
303
304
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
305
 */
306
static __always_inline int index_of(const size_t size)
307
{
308
309
	extern void __bad_size(void);

310
311
312
313
314
315
316
317
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
318
#include <linux/kmalloc_sizes.h>
319
#undef CACHE
320
		__bad_size();
321
	} else
322
		__bad_size();
323
324
325
	return 0;
}

326
327
static int slab_early_init = 1;

328
329
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
330

Pekka Enberg's avatar
Pekka Enberg committed
331
static void kmem_list3_init(struct kmem_list3 *parent)
332
333
334
335
336
337
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
338
	parent->colour_next = 0;
339
340
341
342
343
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
344
345
346
347
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
348
349
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
350
351
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
352
353
354
355
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
356
357
358
359
360

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
361
362
363
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
364
 *
Adrian Bunk's avatar
Adrian Bunk committed
365
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
366
367
368
369
370
371
372
373
374
375
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
376
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
377
378
379
380
381
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
382
383
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
384
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
385
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
386
387
388
389
390
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
391
392
393
394
395
396
397
398
399
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
400
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
401
402
403
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
404
#define	STATS_INC_NODEFREES(x)	do { } while (0)
405
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
406
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
407
408
409
410
411
412
413
414
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
415
416
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
417
 * 0		: objp
418
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
419
420
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
421
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
422
 * 		redzone word.
423
424
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Morton's avatar
Andrew Morton committed
425
426
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
427
 */
428
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
429
{
430
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
431
432
}

433
static int obj_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
434
{
435
	return cachep->obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
436
437
}

438
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
439
440
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
441
442
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
443
444
}

445
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
446
447
448
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
449
450
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
451
					      REDZONE_ALIGN);
452
453
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
454
455
}

456
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
457
458
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
459
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
460
461
462
463
}

#else

464
465
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
466
467
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
468
469
470
471
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

472
#ifdef CONFIG_TRACING
473
474
475
476
477
478
479
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
480
481
482
483
484
485
486
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

Andrew Morton's avatar
Andrew Morton committed
487
488
489
490
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
Linus Torvalds's avatar
Linus Torvalds committed
491
 */
492
493
494
495
496
497
498
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
499
	page = compound_head(page);
500
	BUG_ON(!PageSlab(page));
501
502
503
504
505
506
507
508
509
510
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
511
	BUG_ON(!PageSlab(page));
512
513
	return (struct slab *)page->lru.prev;
}
Linus Torvalds's avatar
Linus Torvalds committed
514

515
516
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
517
	struct page *page = virt_to_head_page(obj);
518
519
520
521
522
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
523
	struct page *page = virt_to_head_page(obj);
524
525
526
	return page_get_slab(page);
}

527
528
529
530
531
532
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

533
534
535
536
537
538
539
540
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
541
{
542
543
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
544
545
}

Andrew Morton's avatar
Andrew Morton committed
546
547
548
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
566
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
567
568
569
570
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
571
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
572
static struct arraycache_init initarray_generic =
573
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
574
575

/* internal cache of cache description objs */
576
static struct kmem_cache cache_cache = {
577
578
579
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
580
	.buffer_size = sizeof(struct kmem_cache),
581
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
582
583
};

584
585
#define BAD_ALIEN_MAGIC 0x01020304ul

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

606
607
608
609
610
611
612
613
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
614
615
616
617
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
618
 */
619
620
621
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

622
static void init_node_lock_keys(int q)
623
{
624
625
	struct cache_sizes *s = malloc_sizes;

626
627
628
629
630
631
632
633
634
635
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
636
			continue;
637
638
639
640
641
642
643
644
645
646
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
647
			continue;
648
649
650
651
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
652
		}
653
654
	}
}
655
656
657
658
659
660
661
662

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
663
#else
664
665
666
667
static void init_node_lock_keys(int q)
{
}

668
static inline void init_lock_keys(void)
669
670
671
672
{
}
#endif

673
/*
674
 * Guard access to the cache-chain.
675
 */
Ingo Molnar's avatar
Ingo Molnar committed
676
static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
677
678
static struct list_head cache_chain;

679
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
680

681
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
682
683
684
685
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
686
687
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
688
689
690
691
692
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
693
694
695
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
696
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
697
#endif
698
699
700
	if (!size)
		return ZERO_SIZE_PTR;

Linus Torvalds's avatar
Linus Torvalds committed
701
702
703
704
	while (size > csizep->cs_size)
		csizep++;

	/*
705
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
706
707
708
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
709
#ifdef CONFIG_ZONE_DMA
Linus Torvalds's avatar
Linus Torvalds committed
710
711
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
712
#endif
Linus Torvalds's avatar
Linus Torvalds committed
713
714
715
	return csizep->cs_cachep;
}

716
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
717
718
719
720
{
	return __find_general_cachep(size, gfpflags);
}

721
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
722
{
723
724
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
725

Andrew Morton's avatar
Andrew Morton committed
726
727
728
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
729
730
731
732
733
734
735
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
785
786
}

787
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
788

Andrew Morton's avatar
Andrew Morton committed
789
790
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
791
792
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
793
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
794
795
796
	dump_stack();
}

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

813
814
815
816
817
818
819
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
820
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
821
822
823
824
825

static void init_reap_node(int cpu)
{
	int node;

826
	node = next_node(cpu_to_mem(cpu), node_online_map);
827
	if (node == MAX_NUMNODES)
828
		node = first_node(node_online_map);
829

830
	per_cpu(slab_reap_node, cpu) = node;
831
832
833
834
}

static void next_reap_node(void)
{
835
	int node = __this_cpu_read(slab_reap_node);
836
837
838
839

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
840
	__this_cpu_write(slab_reap_node, node);
841
842
843
844
845
846
847
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
848
849
850
851
852
853
854
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
855
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
856
{
857
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
858
859
860
861
862
863

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
864
	if (keventd_up() && reap_work->work.func == NULL) {
865
		init_reap_node(cpu);
866
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
867
868
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
869
870
871
	}
}

872
static struct array_cache *alloc_arraycache(int node, int entries,
873
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
874
{
875
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
876
877
	struct array_cache *nc = NULL;

878
	nc = kmalloc_node(memsize, gfp, node);
879
880
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
881
	 * However, when such objects are allocated or transferred to another
882
883
884
885
886
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
887
888
889
890
891
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
892
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
893
894
895
896
	}
	return nc;
}

897
898
899
900
901
902
903
904
905
906
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
907
	int nr = min3(from->avail, max, to->limit - to->avail);
908
909
910
911
912
913
914
915
916
917
918
919

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

920
921
922
923
924
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

925
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

945
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
946
947
948
949
950
951
952
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

953
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
954
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
955

956
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
957
958
{
	struct array_cache **ac_ptr;
959
	int memsize = sizeof(void *) * nr_node_ids;
960
961
962
963
	int i;

	if (limit > 1)
		limit = 12;
964
	ac_ptr = kzalloc_node(memsize, gfp, node);
965
966
	if (ac_ptr) {
		for_each_node(i) {
967
			if (i == node || !node_online(i))
968
				continue;
969
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
970
			if (!ac_ptr[i]) {
971
				for (i--; i >= 0; i--)
972
973
974
975
976
977
978
979
980
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
981
static void free_alien_cache(struct array_cache **ac_ptr)
982
983
984
985
986
987
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
988
	    kfree(ac_ptr[i]);
989
990
991
	kfree(ac_ptr);
}

992
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
993
				struct array_cache *ac, int node)
994
995
996
997
998
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
999
1000
1001
1002
1003
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1004
1005
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1006

1007
		free_block(cachep, ac->entry, ac->avail, node);
1008
1009
1010
1011
1012
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1013
1014
1015
1016
1017
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1018
	int node = __this_cpu_read(slab_reap_node);
1019
1020
1021

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1022
1023

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1024
1025
1026
1027
1028
1029
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1030
1031
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1032
{
1033
	int i = 0;
1034
1035
1036
1037
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1038
		ac = alien[i];
1039
1040
1041
1042
1043
1044
1045
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1046

1047
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1048
1049
1050
1051
1052
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
1053
1054
	int node;

1055
	node = numa_mem_id();
1056
1057
1058
1059
1060

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1061
	if (likely(slabp->nodeid == node))
1062
1063
		return 0;

1064
	l3 = cachep->nodelists[node];
1065
1066
1067
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1068
		spin_lock(&alien->lock);
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1082
1083
#endif

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
 * Must hold cache_chain_mutex.
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

	list_for_each_entry(cachep, &cache_chain, next) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1130
1131
1132
1133
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1134
	int node = cpu_to_mem(cpu);
1135
	const struct cpumask *mask = cpumask_of_node(node);
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1157
		if (!cpumask_empty(mask)) {
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1196
{
1197
	struct kmem_cache *cachep;
1198
	struct kmem_list3 *l3 = NULL;
1199
	int node = cpu_to_mem(cpu);
1200
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1201

1202
1203
1204
1205
1206
1207
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1208
1209
1210
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1222
					cachep->batchcount, GFP_KERNEL);
1223
1224
1225
1226
1227
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1228
				0xbaadf00d, GFP_KERNEL);
1229
1230
			if (!shared) {
				kfree(nc);
Linus Torvalds's avatar
Linus Torvalds committed
1231
				goto bad;
1232
			}
1233
1234
		}
		if (use_alien_caches) {
1235
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1236
1237
1238
			if (!alien) {
				kfree(shared);
				kfree(nc);
1239
				goto bad;
1240
			}
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1255
#ifdef CONFIG_NUMA
1256
1257
1258
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1259
		}
1260
1261
1262
1263
1264
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1265
1266
	init_node_lock_keys(node);

1267
1268
	return 0;
bad:
1269
	cpuup_canceled(cpu);
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1282
		mutex_lock(&cache_chain_mutex);
1283
		err = cpuup_prepare(cpu);
1284
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1285
1286
		break;
	case CPU_ONLINE:
1287
	case CPU_ONLINE_FROZEN:
Linus Torvalds's avatar
Linus Torvalds committed
1288
1289
1290
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1291
  	case CPU_DOWN_PREPARE:
1292
  	case CPU_DOWN_PREPARE_FROZEN:
1293
1294
1295
1296
1297
1298
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1299
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1300
		/* Now the cache_reaper is guaranteed to be not running. */
1301
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1302
1303
  		break;
  	case CPU_DOWN_FAILED:
1304
  	case CPU_DOWN_FAILED_FROZEN:
1305
1306
		start_cpu_timer(cpu);
  		break;
Linus Torvalds's avatar
Linus Torvalds committed
1307
	case CPU_DEAD:
1308
	case CPU_DEAD_FROZEN:
1309
1310
1311
1312
1313
1314
1315
1316
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
Simon Arlott's avatar
Simon Arlott committed
1317
		/* fall through */
1318
#endif