slab.c 115 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
186
187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188
189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
208
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
209
210
};

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
251
252
253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254
255
256
257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
258
			 */
Linus Torvalds's avatar
Linus Torvalds committed
259
260
};

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
278
279
280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
281
282
283
284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
286
287
288
};

/*
289
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
290
 */
291
struct kmem_cache_node {
292
293
294
295
296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
298
299
300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
301
302
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
303
304
};

305
306
307
/*
 * Need this for bootstrapping a per node allocator.
 */
308
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309
static struct kmem_cache_node __initdata initkmem_list3[NUM_INIT_LISTS];
310
#define	CACHE_CACHE 0
311
312
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
313

314
static int drain_freelist(struct kmem_cache *cache,
315
			struct kmem_cache_node *l3, int tofree);
316
317
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
318
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
319
static void cache_reap(struct work_struct *unused);
320

321
322
static int slab_early_init = 1;

323
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
324
#define INDEX_L3 kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
325

326
static void kmem_list3_init(struct kmem_cache_node *parent)
327
328
329
330
331
332
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
333
	parent->colour_next = 0;
334
335
336
337
338
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
339
340
341
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
342
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
343
344
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
345
346
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
347
348
349
350
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
351
352
353
354
355

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
356
357
358
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
359
 *
Adrian Bunk's avatar
Adrian Bunk committed
360
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
361
362
363
364
365
366
367
368
369
370
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
371
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
372
373
374
375
376
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
377
378
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
379
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
380
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
381
382
383
384
385
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
386
387
388
389
390
391
392
393
394
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
395
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
396
397
398
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
399
#define	STATS_INC_NODEFREES(x)	do { } while (0)
400
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
401
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
402
403
404
405
406
407
408
409
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
410
411
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
412
 * 0		: objp
413
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
414
415
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
416
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
417
 * 		redzone word.
418
 * cachep->obj_offset: The real object.
419
420
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
421
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
422
 */
423
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
424
{
425
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
426
427
}

428
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
429
430
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
431
432
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
433
434
}

435
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
436
437
438
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
439
		return (unsigned long long *)(objp + cachep->size -
440
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
441
					      REDZONE_ALIGN);
442
	return (unsigned long long *) (objp + cachep->size -
443
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
444
445
}

446
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
447
448
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
449
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
450
451
452
453
}

#else

454
#define obj_offset(x)			0
455
456
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
457
458
459
460
461
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
462
463
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
464
 */
465
466
467
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
468
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
469

470
471
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
472
	struct page *page = virt_to_head_page(obj);
473
	return page->slab_cache;
474
475
476
477
}

static inline struct slab *virt_to_slab(const void *obj)
{
478
	struct page *page = virt_to_head_page(obj);
479
480
481

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
482
483
}

484
485
486
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
487
	return slab->s_mem + cache->size * idx;
488
489
}

490
/*
491
492
493
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
494
495
496
497
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
498
{
499
500
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
501
502
}

Linus Torvalds's avatar
Linus Torvalds committed
503
static struct arraycache_init initarray_generic =
504
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
505
506

/* internal cache of cache description objs */
507
static struct kmem_cache kmem_cache_boot = {
508
509
510
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
511
	.size = sizeof(struct kmem_cache),
512
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
513
514
};

515
516
#define BAD_ALIEN_MAGIC 0x01020304ul

517
518
519
520
521
522
523
524
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
525
526
527
528
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
529
 */
530
531
532
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

533
534
535
536
537
538
539
540
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
541
	struct kmem_cache_node *l3;
542
543
	int r;

544
	l3 = cachep->node[q];
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

578
static void init_node_lock_keys(int q)
579
{
580
	int i;
581

582
	if (slab_state < UP)
583
584
		return;

585
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
586
		struct kmem_cache_node *l3;
587
588
589
590
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
591

592
		l3 = cache->node[q];
593
		if (!l3 || OFF_SLAB(cache))
594
			continue;
595

596
		slab_set_lock_classes(cache, &on_slab_l3_key,
597
				&on_slab_alc_key, q);
598
599
	}
}
600

601
602
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
603
	if (!cachep->node[q])
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

619
620
621
622
623
624
625
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
626
#else
627
628
629
630
static void init_node_lock_keys(int q)
{
}

631
static inline void init_lock_keys(void)
632
633
{
}
634

635
636
637
638
639
640
641
642
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

643
644
645
646
647
648
649
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
650
651
#endif

652
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
653

654
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
655
656
657
658
{
	return cachep->array[smp_processor_id()];
}

659
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
660
{
661
662
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
663

Andrew Morton's avatar
Andrew Morton committed
664
665
666
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
667
668
669
670
671
672
673
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
674

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
723
724
}

725
#if DEBUG
726
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
727

Andrew Morton's avatar
Andrew Morton committed
728
729
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
730
731
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
732
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
733
	dump_stack();
734
	add_taint(TAINT_BAD_PAGE);
Linus Torvalds's avatar
Linus Torvalds committed
735
}
736
#endif
Linus Torvalds's avatar
Linus Torvalds committed
737

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

754
755
756
757
758
759
760
761
762
763
764
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

765
766
767
768
769
770
771
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
772
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
773
774
775
776
777

static void init_reap_node(int cpu)
{
	int node;

778
	node = next_node(cpu_to_mem(cpu), node_online_map);
779
	if (node == MAX_NUMNODES)
780
		node = first_node(node_online_map);
781

782
	per_cpu(slab_reap_node, cpu) = node;
783
784
785
786
}

static void next_reap_node(void)
{
787
	int node = __this_cpu_read(slab_reap_node);
788
789
790
791

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
792
	__this_cpu_write(slab_reap_node, node);
793
794
795
796
797
798
799
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
800
801
802
803
804
805
806
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
807
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
808
{
809
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
810
811
812
813
814
815

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
816
	if (keventd_up() && reap_work->work.func == NULL) {
817
		init_reap_node(cpu);
818
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
819
820
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
821
822
823
	}
}

824
static struct array_cache *alloc_arraycache(int node, int entries,
825
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
826
{
827
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
828
829
	struct array_cache *nc = NULL;

830
	nc = kmalloc_node(memsize, gfp, node);
831
832
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
833
	 * However, when such objects are allocated or transferred to another
834
835
836
837
838
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
839
840
841
842
843
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
844
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
845
846
847
848
	}
	return nc;
}

849
850
851
852
853
854
855
856
857
858
859
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
860
	struct kmem_cache_node *l3 = cachep->node[numa_mem_id()];
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

885
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
886
887
888
889
890
891
892
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
893
		struct kmem_cache_node *l3;
894
895
896
897
898
899
900

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
901
		for (i = 0; i < ac->avail; i++) {
902
903
904
905
906
907
908
909
910
911
912
913
914
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
915
		l3 = cachep->node[numa_mem_id()];
916
917
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
918
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
919
920
921
922
923
924
925
926
927
928
929
930
931
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

932
933
934
935
936
937
938
939
940
941
942
943
944
945
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
946
947
948
949
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
950
		struct page *page = virt_to_head_page(objp);
951
952
953
954
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

955
956
957
958
959
960
961
962
963
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

964
965
966
	ac->entry[ac->avail++] = objp;
}

967
968
969
970
971
972
973
974
975
976
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
977
	int nr = min3(from->avail, max, to->limit - to->avail);
978
979
980
981
982
983
984
985
986
987
988
989

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

990
991
992
993
994
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

995
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1015
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1016
1017
1018
1019
1020
1021
1022
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1023
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1024
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1025

1026
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1027
1028
{
	struct array_cache **ac_ptr;
1029
	int memsize = sizeof(void *) * nr_node_ids;
1030
1031
1032
1033
	int i;

	if (limit > 1)
		limit = 12;
1034
	ac_ptr = kzalloc_node(memsize, gfp, node);
1035
1036
	if (ac_ptr) {
		for_each_node(i) {
1037
			if (i == node || !node_online(i))
1038
				continue;
1039
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1040
			if (!ac_ptr[i]) {
1041
				for (i--; i >= 0; i--)
1042
1043
1044
1045
1046
1047
1048
1049
1050
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
1051
static void free_alien_cache(struct array_cache **ac_ptr)
1052
1053
1054
1055
1056
1057
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
1058
	    kfree(ac_ptr[i]);
1059
1060
1061
	kfree(ac_ptr);
}

1062
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1063
				struct array_cache *ac, int node)
1064
{
1065
	struct kmem_cache_node *rl3 = cachep->node[node];
1066
1067
1068

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1069
1070
1071
1072
1073
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1074
1075
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1076

1077
		free_block(cachep, ac->entry, ac->avail, node);
1078
1079
1080
1081
1082
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1083
1084
1085
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1086
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *l3)
1087
{
1088
	int node = __this_cpu_read(slab_reap_node);
1089
1090
1091

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1092
1093

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1094
1095
1096
1097
1098
1099
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1100
1101
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1102
{
1103
	int i = 0;
1104
1105
1106
1107
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1108
		ac = alien[i];
1109
1110
1111
1112
1113
1114
1115
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1116

1117
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1118
1119
1120
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
1121
	struct kmem_cache_node *l3;
1122
	struct array_cache *alien = NULL;
1123
1124
	int node;

1125
	node = numa_mem_id();
1126
1127
1128
1129
1130

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1131
	if (likely(slabp->nodeid == node))
1132
1133
		return 0;

1134
	l3 = cachep->node[node];
1135
1136
1137
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1138
		spin_lock(&alien->lock);
1139
1140
1141
1142
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1143
		ac_put_obj(cachep, alien, objp);
1144
1145
		spin_unlock(&alien->lock);
	} else {
1146
		spin_lock(&(cachep->node[nodeid])->list_lock);
1147
		free_block(cachep, &objp, 1, nodeid);
1148
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1149
1150
1151
	}
	return 1;
}
1152
1153
#endif

1154
/*
1155
 * Allocates and initializes node for a node on each slab cache, used for
1156
1157
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
1158
 * When hotplugging memory or a cpu, existing node are not replaced if
1159
1160
 * already in use.
 *
1161
 * Must hold slab_mutex.
1162
 */
1163
static int init_cache_node_node(int node)
1164
1165
{
	struct kmem_cache *cachep;
1166
1167
	struct kmem_cache_node *l3;
	const int memsize = sizeof(struct kmem_cache_node);
1168

1169
	list_for_each_entry(cachep, &slab_caches, list) {
1170
1171
1172
1173
1174
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1175
		if (!cachep->node[node]) {
1176
1177
1178
1179
1180
1181
1182
1183
1184
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1185
			 * go.  slab_mutex is sufficient
1186
1187
			 * protection here.
			 */
1188
			cachep->node[node] = l3;
1189
1190
		}

1191
1192
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1193
1194
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1195
		spin_unlock_irq(&cachep->node[node]->list_lock);
1196
1197
1198
1199
	}
	return 0;
}

1200
1201
1202
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
1203
	struct kmem_cache_node *l3 = NULL;
1204
	int node = cpu_to_mem(cpu);
1205
	const struct cpumask *mask = cpumask_of_node(node);
1206

1207
	list_for_each_entry(cachep, &slab_caches, list) {
1208
1209
1210
1211
1212
1213
1214
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1215
		l3 = cachep->node[node];
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1227
		if (!cpumask_empty(mask)) {
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1257
	list_for_each_entry(cachep, &slab_caches, list) {
1258
		l3 = cachep->node[node];
1259
1260
1261
1262
1263
1264
1265
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1266
{
1267
	struct kmem_cache *cachep;
1268
	struct kmem_cache_node *l3 = NULL;