slub.c 85.2 KB
Newer Older
Christoph Lameter's avatar
Christoph Lameter committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
 * The allocator synchronizes using per slab locks and only
 * uses a centralized lock to manage a pool of partial slabs.
 *
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
#include <linux/kallsyms.h>

/*
 * Lock order:
 *   1. slab_lock(page)
 *   2. slab->list_lock
 *
 *   The slab_lock protects operations on the object of a particular
 *   slab and its metadata in the page struct. If the slab lock
 *   has been taken then no allocations nor frees can be performed
 *   on the objects in the slab nor can the slab be added or removed
 *   from the partial or full lists since this would mean modifying
 *   the page_struct of the slab.
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *
 *   The lock order is sometimes inverted when we are trying to get a slab
 *   off a list. We take the list_lock and then look for a page on the list
 *   to use. While we do that objects in the slabs may be freed. We can
 *   only operate on the slab if we have also taken the slab_lock. So we use
 *   a slab_trylock() on the slab. If trylock was successful then no frees
 *   can occur anymore and we can use the slab for allocations etc. If the
 *   slab_trylock() does not succeed then frees are in progress in the slab and
 *   we must stay away from it for a while since we may cause a bouncing
 *   cacheline if we try to acquire the lock. So go onto the next slab.
 *   If all pages are busy then we may allocate a new slab instead of reusing
 *   a partial slab. A new slab has noone operating on it and thus there is
 *   no danger of cacheline contention.
 *
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
Christoph Lameter's avatar
Christoph Lameter committed
69
70
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
Christoph Lameter's avatar
Christoph Lameter committed
71
 * freed then the slab will show up again on the partial lists.
Christoph Lameter's avatar
Christoph Lameter committed
72
73
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
Christoph Lameter's avatar
Christoph Lameter committed
74
75
76
77
78
79
80
81
82
83
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
 * PageActive 		The slab is used as a cpu cache. Allocations
 * 			may be performed from the slab. The slab is not
 * 			on any slab list and cannot be moved onto one.
84
85
86
87
 * 			The cpu slab may be equipped with an additioanl
 * 			lockless_freelist that allows lockless access to
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
Christoph Lameter's avatar
Christoph Lameter committed
88
89
90
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
91
 * 			the fast path and disables lockless freelists.
Christoph Lameter's avatar
Christoph Lameter committed
92
93
 */

94
95
static inline int SlabDebug(struct page *page)
{
96
#ifdef CONFIG_SLUB_DEBUG
97
	return PageError(page);
98
99
100
#else
	return 0;
#endif
101
102
103
104
}

static inline void SetSlabDebug(struct page *page)
{
105
#ifdef CONFIG_SLUB_DEBUG
106
	SetPageError(page);
107
#endif
108
109
110
111
}

static inline void ClearSlabDebug(struct page *page)
{
112
#ifdef CONFIG_SLUB_DEBUG
113
	ClearPageError(page);
114
#endif
115
116
}

Christoph Lameter's avatar
Christoph Lameter committed
117
118
119
120
121
/*
 * Issues still to be resolved:
 *
 * - The per cpu array is updated for each new slab and and is a remote
 *   cacheline for most nodes. This could become a bouncing cacheline given
Christoph Lameter's avatar
Christoph Lameter committed
122
123
 *   enough frequent updates. There are 16 pointers in a cacheline, so at
 *   max 16 cpus could compete for the cacheline which may be okay.
Christoph Lameter's avatar
Christoph Lameter committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

#if PAGE_SHIFT <= 12

/*
 * Small page size. Make sure that we do not fragment memory
 */
#define DEFAULT_MAX_ORDER 1
#define DEFAULT_MIN_OBJECTS 4

#else

/*
 * Large page machines are customarily able to handle larger
 * page orders.
 */
#define DEFAULT_MAX_ORDER 2
#define DEFAULT_MIN_OBJECTS 8

#endif

152
153
154
155
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
Christoph Lameter's avatar
Christoph Lameter committed
156
157
#define MIN_PARTIAL 2

158
159
160
161
162
163
164
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

Christoph Lameter's avatar
Christoph Lameter committed
165
166
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
Christoph Lameter's avatar
Christoph Lameter committed
167

Christoph Lameter's avatar
Christoph Lameter committed
168
169
170
171
172
173
174
175
176
177
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DESTROY_BY_RCU)

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
		SLAB_CACHE_DMA)

#ifndef ARCH_KMALLOC_MINALIGN
178
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
Christoph Lameter's avatar
Christoph Lameter committed
179
180
181
#endif

#ifndef ARCH_SLAB_MINALIGN
182
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
Christoph Lameter's avatar
Christoph Lameter committed
183
184
185
186
187
#endif

/* Internal SLUB flags */
#define __OBJECT_POISON 0x80000000	/* Poison object */

188
189
190
191
192
/* Not all arches define cache_line_size */
#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

Christoph Lameter's avatar
Christoph Lameter committed
193
194
195
196
197
198
199
200
201
static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
Christoph Lameter's avatar
Christoph Lameter committed
202
	UP,		/* Everything works but does not show up in sysfs */
Christoph Lameter's avatar
Christoph Lameter committed
203
204
205
206
207
208
209
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
LIST_HEAD(slab_caches);

210
211
212
213
214
215
216
217
218
219
220
221
/*
 * Tracking user of a slab.
 */
struct track {
	void *addr;		/* Called from address */
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

222
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
Christoph Lameter's avatar
Christoph Lameter committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
#else
static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
static void sysfs_slab_remove(struct kmem_cache *s) {}
#endif

/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
#ifdef CONFIG_NUMA
	return s->node[node];
#else
	return &s->local_node;
#endif
}

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	if (object < base || object >= base + s->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
 * Slow version of get and set free pointer.
 *
 * This version requires touching the cache lines of kmem_cache which
 * we avoid to do in the fast alloc free paths. There we obtain the offset
 * from the page struct.
 */
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
#define for_each_object(__p, __s, __addr) \
	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
			__p += (__s)->size)

/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
	for (__p = (__free); __p; __p = get_freepointer((__s), __p))

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

299
300
301
302
303
304
305
306
#ifdef CONFIG_SLUB_DEBUG
/*
 * Debug settings:
 */
static int slub_debug;

static char *slub_debug_slabs;

Christoph Lameter's avatar
Christoph Lameter committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
	int i, offset;
	int newline = 1;
	char ascii[17];

	ascii[16] = 0;

	for (i = 0; i < length; i++) {
		if (newline) {
			printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
			newline = 0;
		}
		printk(" %02x", addr[i]);
		offset = i % 16;
		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
		if (offset == 15) {
			printk(" %s\n",ascii);
			newline = 1;
		}
	}
	if (!newline) {
		i %= 16;
		while (i < 16) {
			printk("   ");
			ascii[i] = ' ';
			i++;
		}
		printk(" %s\n", ascii);
	}
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
				enum track_item alloc, void *addr)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
		p->pid = current ? current->pid : -1;
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
	if (s->flags & SLAB_STORE_USER) {
		set_track(s, object, TRACK_FREE, NULL);
		set_track(s, object, TRACK_ALLOC, NULL);
	}
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

	printk(KERN_ERR "%s: ", s);
	__print_symbol("%s", (unsigned long)t->addr);
	printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
}

static void print_trailer(struct kmem_cache *s, u8 *p)
{
	unsigned int off;	/* Offset of last byte */

	if (s->flags & SLAB_RED_ZONE)
		print_section("Redzone", p + s->objsize,
			s->inuse - s->objsize);

	printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
			p + s->offset,
			get_freepointer(s, p));

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

	if (s->flags & SLAB_STORE_USER) {
		print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
		print_track("Last free ", get_track(s, p, TRACK_FREE));
		off += 2 * sizeof(struct track);
	}

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
		print_section("Filler", p + off, s->size - off);
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
	u8 *addr = page_address(page);

	printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
			s->name, reason, object, page);
	printk(KERN_ERR "    offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
		object - addr, page->flags, page->inuse, page->freelist);
	if (object > addr + 16)
		print_section("Bytes b4", object - 16, 16);
	print_section("Object", object, min(s->objsize, 128));
	print_trailer(s, object);
	dump_stack();
}

static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
{
	va_list args;
	char buf[100];

	va_start(args, reason);
	vsnprintf(buf, sizeof(buf), reason, args);
	va_end(args);
	printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
		page);
	dump_stack();
}

static void init_object(struct kmem_cache *s, void *object, int active)
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
		p[s->objsize -1] = POISON_END;
	}

	if (s->flags & SLAB_RED_ZONE)
		memset(p + s->objsize,
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
			s->inuse - s->objsize);
}

static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
{
	while (bytes) {
		if (*start != (u8)value)
			return 0;
		start++;
		bytes--;
	}
	return 1;
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
Christoph Lameter's avatar
Christoph Lameter committed
483
 *
Christoph Lameter's avatar
Christoph Lameter committed
484
485
486
487
488
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
Christoph Lameter's avatar
Christoph Lameter committed
489
490
491
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
Christoph Lameter's avatar
Christoph Lameter committed
492
493
494
495
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
Christoph Lameter's avatar
Christoph Lameter committed
496
497
 * 	Meta data starts here.
 *
Christoph Lameter's avatar
Christoph Lameter committed
498
499
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
Christoph Lameter's avatar
Christoph Lameter committed
500
501
502
503
504
 * 	C. Padding to reach required alignment boundary or at mininum
 * 		one word if debuggin is on to be able to detect writes
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
Christoph Lameter's avatar
Christoph Lameter committed
505
506
 *
 * object + s->size
Christoph Lameter's avatar
Christoph Lameter committed
507
 * 	Nothing is used beyond s->size.
Christoph Lameter's avatar
Christoph Lameter committed
508
 *
Christoph Lameter's avatar
Christoph Lameter committed
509
510
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
Christoph Lameter's avatar
Christoph Lameter committed
511
512
513
514
515
516
 * may be used with merged slabcaches.
 */

static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
517
	printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
Christoph Lameter's avatar
Christoph Lameter committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
		s->name, message, data, from, to - 1);
	memset(from, data, to - from);
}

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

	if (check_bytes(p + off, POISON_INUSE, s->size - off))
		return 1;

	object_err(s, page, p, "Object padding check fails");

	/*
	 * Restore padding
	 */
	restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
	return 0;
}

static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
	u8 *p;
	int length, remainder;

	if (!(s->flags & SLAB_POISON))
		return 1;

	p = page_address(page);
	length = s->objects * s->size;
	remainder = (PAGE_SIZE << s->order) - length;
	if (!remainder)
		return 1;

	if (!check_bytes(p + length, POISON_INUSE, remainder)) {
564
		slab_err(s, page, "Padding check failed");
Christoph Lameter's avatar
Christoph Lameter committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
		restore_bytes(s, "slab padding", POISON_INUSE, p + length,
			p + length + remainder);
		return 0;
	}
	return 1;
}

static int check_object(struct kmem_cache *s, struct page *page,
					void *object, int active)
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
		unsigned int red =
			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;

		if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
			object_err(s, page, object,
			active ? "Redzone Active" : "Redzone Inactive");
			restore_bytes(s, "redzone", red,
				endobject, object + s->inuse);
			return 0;
		}
	} else {
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
			!check_bytes(endobject, POISON_INUSE,
					s->inuse - s->objsize)) {
		object_err(s, page, p, "Alignment padding check fails");
		/*
		 * Fix it so that there will not be another report.
		 *
		 * Hmmm... We may be corrupting an object that now expects
		 * to be longer than allowed.
		 */
		restore_bytes(s, "alignment padding", POISON_INUSE,
			endobject, object + s->inuse);
		}
	}

	if (s->flags & SLAB_POISON) {
		if (!active && (s->flags & __OBJECT_POISON) &&
			(!check_bytes(p, POISON_FREE, s->objsize - 1) ||
				p[s->objsize - 1] != POISON_END)) {

			object_err(s, page, p, "Poison check failed");
			restore_bytes(s, "Poison", POISON_FREE,
						p, p + s->objsize -1);
			restore_bytes(s, "Poison", POISON_END,
					p + s->objsize - 1, p + s->objsize);
			return 0;
		}
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

	if (!s->offset && active)
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
		 * No choice but to zap it and thus loose the remainder
		 * of the free objects in this slab. May cause
Christoph Lameter's avatar
Christoph Lameter committed
636
		 * another error because the object count is now wrong.
Christoph Lameter's avatar
Christoph Lameter committed
637
638
639
640
641
642
643
644
645
646
647
648
		 */
		set_freepointer(s, p, NULL);
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
649
650
		slab_err(s, page, "Not a valid slab page flags=%lx "
			"mapping=0x%p count=%d", page->flags, page->mapping,
Christoph Lameter's avatar
Christoph Lameter committed
651
652
653
654
			page_count(page));
		return 0;
	}
	if (page->offset * sizeof(void *) != s->offset) {
655
656
		slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
			"mapping=0x%p count=%d",
Christoph Lameter's avatar
Christoph Lameter committed
657
658
659
660
661
662
663
			(unsigned long)(page->offset * sizeof(void *)),
			page->flags,
			page->mapping,
			page_count(page));
		return 0;
	}
	if (page->inuse > s->objects) {
664
665
666
		slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
			"mapping=0x%p count=%d",
			s->name, page->inuse, s->objects, page->flags,
Christoph Lameter's avatar
Christoph Lameter committed
667
668
669
670
671
672
673
674
675
			page->mapping, page_count(page));
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
676
677
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
Christoph Lameter's avatar
Christoph Lameter committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
	void *fp = page->freelist;
	void *object = NULL;

	while (fp && nr <= s->objects) {
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
				set_freepointer(s, object, NULL);
				break;
			} else {
695
696
				slab_err(s, page, "Freepointer 0x%p corrupt",
									fp);
Christoph Lameter's avatar
Christoph Lameter committed
697
698
				page->freelist = NULL;
				page->inuse = s->objects;
699
700
701
				printk(KERN_ERR "@@@ SLUB %s: Freelist "
					"cleared. Slab 0x%p\n",
					s->name, page);
Christoph Lameter's avatar
Christoph Lameter committed
702
703
704
705
706
707
708
709
710
711
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

	if (page->inuse != s->objects - nr) {
712
713
714
		slab_err(s, page, "Wrong object count. Counter is %d but "
			"counted were %d", s, page, page->inuse,
							s->objects - nr);
Christoph Lameter's avatar
Christoph Lameter committed
715
		page->inuse = s->objects - nr;
716
717
		printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
			"Slab @0x%p\n", s->name, page);
Christoph Lameter's avatar
Christoph Lameter committed
718
719
720
721
	}
	return search == NULL;
}

722
/*
Christoph Lameter's avatar
Christoph Lameter committed
723
 * Tracking of fully allocated slabs for debugging purposes.
724
 */
Christoph Lameter's avatar
Christoph Lameter committed
725
static void add_full(struct kmem_cache_node *n, struct page *page)
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
{
	spin_lock(&n->list_lock);
	list_add(&page->lru, &n->full);
	spin_unlock(&n->list_lock);
}

static void remove_full(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n;

	if (!(s->flags & SLAB_STORE_USER))
		return;

	n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	spin_unlock(&n->list_lock);
}

Christoph Lameter's avatar
Christoph Lameter committed
746
747
748
749
750
751
752
static int alloc_object_checks(struct kmem_cache *s, struct page *page,
							void *object)
{
	if (!check_slab(s, page))
		goto bad;

	if (object && !on_freelist(s, page, object)) {
753
754
		slab_err(s, page, "Object 0x%p already allocated", object);
		goto bad;
Christoph Lameter's avatar
Christoph Lameter committed
755
756
757
758
	}

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
759
		goto bad;
Christoph Lameter's avatar
Christoph Lameter committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
	}

	if (!object)
		return 1;

	if (!check_object(s, page, object, 0))
		goto bad;

	return 1;
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
Christoph Lameter's avatar
Christoph Lameter committed
774
		 * as used avoids touching the remaining objects.
Christoph Lameter's avatar
Christoph Lameter committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
		 */
		printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
			s->name, page);
		page->inuse = s->objects;
		page->freelist = NULL;
		/* Fix up fields that may be corrupted */
		page->offset = s->offset / sizeof(void *);
	}
	return 0;
}

static int free_object_checks(struct kmem_cache *s, struct page *page,
							void *object)
{
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
793
		slab_err(s, page, "Invalid object pointer 0x%p", object);
Christoph Lameter's avatar
Christoph Lameter committed
794
795
796
797
		goto fail;
	}

	if (on_freelist(s, page, object)) {
798
		slab_err(s, page, "Object 0x%p already free", object);
Christoph Lameter's avatar
Christoph Lameter committed
799
800
801
802
803
804
805
806
		goto fail;
	}

	if (!check_object(s, page, object, 1))
		return 0;

	if (unlikely(s != page->slab)) {
		if (!PageSlab(page))
807
808
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
Christoph Lameter's avatar
Christoph Lameter committed
809
		else
810
		if (!page->slab) {
Christoph Lameter's avatar
Christoph Lameter committed
811
			printk(KERN_ERR
812
				"SLUB <none>: no slab for object 0x%p.\n",
Christoph Lameter's avatar
Christoph Lameter committed
813
						object);
814
815
			dump_stack();
		}
Christoph Lameter's avatar
Christoph Lameter committed
816
		else
817
818
			slab_err(s, page, "object at 0x%p belongs "
				"to slab %s", object, page->slab->name);
Christoph Lameter's avatar
Christoph Lameter committed
819
820
821
822
823
824
825
826
827
		goto fail;
	}
	return 1;
fail:
	printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
		s->name, page, object);
	return 0;
}

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
			print_section("Object", (void *)object, s->objsize);

		dump_stack();
	}
}

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
static int __init setup_slub_debug(char *str)
{
	if (!str || *str != '=')
		slub_debug = DEBUG_DEFAULT_FLAGS;
	else {
		str++;
		if (*str == 0 || *str == ',')
			slub_debug = DEBUG_DEFAULT_FLAGS;
		else
		for( ;*str && *str != ','; str++)
			switch (*str) {
			case 'f' : case 'F' :
				slub_debug |= SLAB_DEBUG_FREE;
				break;
			case 'z' : case 'Z' :
				slub_debug |= SLAB_RED_ZONE;
				break;
			case 'p' : case 'P' :
				slub_debug |= SLAB_POISON;
				break;
			case 'u' : case 'U' :
				slub_debug |= SLAB_STORE_USER;
				break;
			case 't' : case 'T' :
				slub_debug |= SLAB_TRACE;
				break;
			default:
				printk(KERN_ERR "slub_debug option '%c' "
					"unknown. skipped\n",*str);
			}
	}

	if (*str == ',')
		slub_debug_slabs = str + 1;
	return 1;
}

__setup("slub_debug", setup_slub_debug);

static void kmem_cache_open_debug_check(struct kmem_cache *s)
{
	/*
	 * The page->offset field is only 16 bit wide. This is an offset
	 * in units of words from the beginning of an object. If the slab
	 * size is bigger then we cannot move the free pointer behind the
	 * object anymore.
	 *
	 * On 32 bit platforms the limit is 256k. On 64bit platforms
	 * the limit is 512k.
	 *
894
	 * Debugging or ctor may create a need to move the free
895
896
897
898
899
	 * pointer. Fail if this happens.
	 */
	if (s->size >= 65535 * sizeof(void *)) {
		BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
900
		BUG_ON(s->ctor);
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
	}
	else
		/*
		 * Enable debugging if selected on the kernel commandline.
		 */
		if (slub_debug && (!slub_debug_slabs ||
		    strncmp(slub_debug_slabs, s->name,
		    	strlen(slub_debug_slabs)) == 0))
				s->flags |= slub_debug;
}
#else

static inline int alloc_object_checks(struct kmem_cache *s,
		struct page *page, void *object) { return 0; }

static inline int free_object_checks(struct kmem_cache *s,
		struct page *page, void *object) { return 0; }

static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
static inline void trace(struct kmem_cache *s, struct page *page,
			void *object, int alloc) {}
static inline void init_object(struct kmem_cache *s,
			void *object, int active) {}
static inline void init_tracking(struct kmem_cache *s, void *object) {}
static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
			void *object, int active) { return 1; }
static inline void set_track(struct kmem_cache *s, void *object,
			enum track_item alloc, void *addr) {}
static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
#define slub_debug 0
#endif
Christoph Lameter's avatar
Christoph Lameter committed
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
/*
 * Slab allocation and freeing
 */
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page * page;
	int pages = 1 << s->order;

	if (s->order)
		flags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		flags |= SLUB_DMA;

	if (node == -1)
		page = alloc_pages(flags, s->order);
	else
		page = alloc_pages_node(node, flags, s->order);

	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		pages);

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
968
	if (SlabDebug(page)) {
Christoph Lameter's avatar
Christoph Lameter committed
969
970
971
972
		init_object(s, object, 0);
		init_tracking(s, object);
	}

973
974
	if (unlikely(s->ctor))
		s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
Christoph Lameter's avatar
Christoph Lameter committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	struct kmem_cache_node *n;
	void *start;
	void *end;
	void *last;
	void *p;

	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));

	if (flags & __GFP_WAIT)
		local_irq_enable();

	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
	if (!page)
		goto out;

	n = get_node(s, page_to_nid(page));
	if (n)
		atomic_long_inc(&n->nr_slabs);
	page->offset = s->offset / sizeof(void *);
	page->slab = s;
	page->flags |= 1 << PG_slab;
	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
			SLAB_STORE_USER | SLAB_TRACE))
1003
		SetSlabDebug(page);
Christoph Lameter's avatar
Christoph Lameter committed
1004
1005
1006
1007
1008
1009
1010
1011

	start = page_address(page);
	end = start + s->objects * s->size;

	if (unlikely(s->flags & SLAB_POISON))
		memset(start, POISON_INUSE, PAGE_SIZE << s->order);

	last = start;
1012
	for_each_object(p, s, start) {
Christoph Lameter's avatar
Christoph Lameter committed
1013
1014
1015
1016
1017
1018
1019
1020
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
	set_freepointer(s, last, NULL);

	page->freelist = start;
1021
	page->lockless_freelist = NULL;
Christoph Lameter's avatar
Christoph Lameter committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
	page->inuse = 0;
out:
	if (flags & __GFP_WAIT)
		local_irq_disable();
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
	int pages = 1 << s->order;

1033
	if (unlikely(SlabDebug(page))) {
Christoph Lameter's avatar
Christoph Lameter committed
1034
1035
1036
		void *p;

		slab_pad_check(s, page);
1037
		for_each_object(p, s, page_address(page))
Christoph Lameter's avatar
Christoph Lameter committed
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
			check_object(s, page, p, 0);
	}

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		- pages);

	page->mapping = NULL;
	__free_pages(page, s->order);
}

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	page = container_of((struct list_head *)h, struct page, lru);
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		/*
		 * RCU free overloads the RCU head over the LRU
		 */
		struct rcu_head *head = (void *)&page->lru;

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	atomic_long_dec(&n->nr_slabs);
	reset_page_mapcount(page);
1077
1078
	ClearSlabDebug(page);
	__ClearPageSlab(page);
Christoph Lameter's avatar
Christoph Lameter committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
	free_slab(s, page);
}

/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	bit_spin_unlock(PG_locked, &page->flags);
}

static __always_inline int slab_trylock(struct page *page)
{
	int rc = 1;

	rc = bit_spin_trylock(PG_locked, &page->flags);
	return rc;
}

/*
 * Management of partially allocated slabs
 */
Christoph Lameter's avatar
Christoph Lameter committed
1106
static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
Christoph Lameter's avatar
Christoph Lameter committed
1107
{
Christoph Lameter's avatar
Christoph Lameter committed
1108
1109
1110
1111
1112
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add_tail(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}
Christoph Lameter's avatar
Christoph Lameter committed
1113

Christoph Lameter's avatar
Christoph Lameter committed
1114
1115
static void add_partial(struct kmem_cache_node *n, struct page *page)
{
Christoph Lameter's avatar
Christoph Lameter committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
	spin_lock(&n->list_lock);
	n->nr_partial++;
	list_add(&page->lru, &n->partial);
	spin_unlock(&n->list_lock);
}

static void remove_partial(struct kmem_cache *s,
						struct page *page)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

	spin_lock(&n->list_lock);
	list_del(&page->lru);
	n->nr_partial--;
	spin_unlock(&n->list_lock);
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
1134
 * Lock slab and remove from the partial list.
Christoph Lameter's avatar
Christoph Lameter committed
1135
 *
Christoph Lameter's avatar
Christoph Lameter committed
1136
 * Must hold list_lock.
Christoph Lameter's avatar
Christoph Lameter committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
 */
static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
{
	if (slab_trylock(page)) {
		list_del(&page->lru);
		n->nr_partial--;
		return 1;
	}
	return 0;
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
1149
 * Try to allocate a partial slab from a specific node.
Christoph Lameter's avatar
Christoph Lameter committed
1150
1151
1152
1153
1154
1155
1156
1157
 */
static struct page *get_partial_node(struct kmem_cache_node *n)
{
	struct page *page;

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
Christoph Lameter's avatar
Christoph Lameter committed
1158
1159
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
Christoph Lameter's avatar
Christoph Lameter committed
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
	list_for_each_entry(page, &n->partial, lru)
		if (lock_and_del_slab(n, page))
			goto out;
	page = NULL;
out:
	spin_unlock(&n->list_lock);
	return page;
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
1175
 * Get a page from somewhere. Search in increasing NUMA distances.
Christoph Lameter's avatar
Christoph Lameter committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
 */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
	struct zone **z;
	struct page *page;

	/*
Christoph Lameter's avatar
Christoph Lameter committed
1185
1186
1187
1188
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
Christoph Lameter's avatar
Christoph Lameter committed
1189
	 *
Christoph Lameter's avatar
Christoph Lameter committed
1190
1191
1192
1193
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
Christoph Lameter's avatar
Christoph Lameter committed
1194
1195
	 *
	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
Christoph Lameter's avatar
Christoph Lameter committed
1196
1197
1198
1199
1200
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
Christoph Lameter's avatar
Christoph Lameter committed
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
	 */
	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	for (z = zonelist->zones; *z; z++) {
		struct kmem_cache_node *n;

		n = get_node(s, zone_to_nid(*z));

		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lameter's avatar
Christoph Lameter committed
1213
				n->nr_partial > MIN_PARTIAL) {
Christoph Lameter's avatar
Christoph Lameter committed
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
			page = get_partial_node(n);
			if (page)
				return page;
		}
	}
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	int searchnode = (node == -1) ? numa_node_id() : node;

	page = get_partial_node(get_node(s, searchnode));
	if (page || (flags & __GFP_THISNODE))
		return page;

	return get_any_partial(s, flags);
}

/*
 * Move a page back to the lists.
 *
 * Must be called with the slab lock held.
 *
 * On exit the slab lock will have been dropped.
 */
static void putback_slab(struct kmem_cache *s, struct page *page)
{
Christoph Lameter's avatar
Christoph Lameter committed
1247
1248
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));

Christoph Lameter's avatar
Christoph Lameter committed
1249
	if (page->inuse) {
Christoph Lameter's avatar
Christoph Lameter committed
1250

Christoph Lameter's avatar
Christoph Lameter committed
1251
		if (page->freelist)
Christoph Lameter's avatar
Christoph Lameter committed
1252
			add_partial(n, page);
1253
		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
Christoph Lameter's avatar
Christoph Lameter committed
1254
			add_full(n, page);
Christoph Lameter's avatar
Christoph Lameter committed
1255
		slab_unlock(page);
Christoph Lameter's avatar
Christoph Lameter committed
1256

Christoph Lameter's avatar
Christoph Lameter committed
1257
	} else {
Christoph Lameter's avatar
Christoph Lameter committed
1258
1259
		if (n->nr_partial < MIN_PARTIAL) {
			/*
Christoph Lameter's avatar
Christoph Lameter committed
1260
1261
1262
1263
1264
1265
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
			 * to come after the other slabs with objects in
			 * order to fill them up. That way the size of the
			 * partial list stays small. kmem_cache_shrink can
			 * reclaim empty slabs from the partial list.
Christoph Lameter's avatar
Christoph Lameter committed
1266
1267
1268
1269
1270
1271
1272
			 */
			add_partial_tail(n, page);
			slab_unlock(page);
		} else {
			slab_unlock(page);
			discard_slab(s, page);
		}
Christoph Lameter's avatar
Christoph Lameter committed
1273
1274
1275
1276
1277
1278
1279
1280
	}
}

/*
 * Remove the cpu slab
 */
static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
{
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
	/*
	 * Merge cpu freelist into freelist. Typically we get here
	 * because both freelists are empty. So this is unlikely
	 * to occur.
	 */
	while (unlikely(page->lockless_freelist)) {
		void **object;

		/* Retrieve object from cpu_freelist */
		object = page->lockless_freelist;
		page->lockless_freelist = page->lockless_freelist[page->offset];

		/* And put onto the regular freelist */
		object[page->offset] = page->freelist;
		page->freelist = object;
		page->inuse--;
	}
Christoph Lameter's avatar
Christoph Lameter committed
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
	s->cpu_slab[cpu] = NULL;
	ClearPageActive(page);

	putback_slab(s, page);
}

static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
{
	slab_lock(page);
	deactivate_slab(s, page, cpu);
}

/*
 * Flush cpu slab.
 * Called from IPI handler with interrupts disabled.
 */
static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
{
	struct page *page = s->cpu_slab[cpu];

	if (likely(page))
		flush_slab(s, page, cpu);
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;
	int cpu = smp_processor_id();

	__flush_cpu_slab(s, cpu);
}

static void flush_all(struct kmem_cache *s)
{
#ifdef CONFIG_SMP
	on_each_cpu(flush_cpu_slab, s, 1, 1);
#else
	unsigned long flags;

	local_irq_save(flags);
	flush_cpu_slab(s);
	local_irq_restore(flags);
#endif
}

/*
1344
1345
1346
1347
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Interrupts are disabled.
Christoph Lameter's avatar
Christoph Lameter committed
1348
 *
1349
1350
1351
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
Christoph Lameter's avatar
Christoph Lameter committed
1352
 *
1353
1354
1355
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
Christoph Lameter's avatar
Christoph Lameter committed
1356
 *
1357
1358
 * And if we were unable to get a new slab from the partial slab lists then
 * we need to allocate a new slab. This is slowest path since we may sleep.
Christoph Lameter's avatar
Christoph Lameter committed
1359
 */
1360
1361
static void *__slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, int node, void *addr, struct page *page)
Christoph Lameter's avatar
Christoph Lameter committed
1362
1363
{
	void **object;
1364
	int cpu = smp_processor_id();
Christoph Lameter's avatar
Christoph Lameter committed
1365
1366
1367
1368
1369
1370
1371

	if (!page)
		goto new_slab;

	slab_lock(page);
	if (unlikely(node != -1 && page_to_nid(page) != node))
		goto another_slab;
1372
load_freelist:
Christoph Lameter's avatar
Christoph Lameter committed
1373
1374
1375
	object = page->freelist;
	if (unlikely(!object))
		goto another_slab;
1376
	if (unlikely(SlabDebug(page)))
Christoph Lameter's avatar
Christoph Lameter committed
1377
1378
		goto debug;

1379
1380
1381
1382
	object = page->freelist;
	page->lockless_freelist = object[page->offset];
	page->inuse = s->objects;
	page->freelist = NULL;
Christoph Lameter's avatar
Christoph Lameter committed
1383
1384
1385
1386
1387
1388
1389
1390
	slab_unlock(page);
	return object;

another_slab:
	deactivate_slab(s, page, cpu);

new_slab:
	page = get_partial(s, gfpflags, node);
1391
	if (page) {
Christoph Lameter's avatar
Christoph Lameter committed
1392
1393
1394
have_slab:
		s->cpu_slab[cpu] = page;
		SetPageActive(page);
1395
		goto load_freelist;
Christoph Lameter's avatar
Christoph Lameter committed
1396
1397
1398
1399
1400
1401
1402
	}

	page = new_slab(s, gfpflags, node);
	if (page) {
		cpu = smp_processor_id();
		if (s->cpu_slab[cpu]) {
			/*
Christoph Lameter's avatar
Christoph Lameter committed
1403
1404
1405
1406
1407
			 * Someone else populated the cpu_slab while we
			 * enabled interrupts, or we have gotten scheduled
			 * on another cpu. The page may not be on the
			 * requested node even if __GFP_THISNODE was
			 * specified. So we need to recheck.
Christoph Lameter's avatar
Christoph Lameter committed
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
			 */
			if (node == -1 ||
				page_to_nid(s->cpu_slab[cpu]) == node) {
				/*
				 * Current cpuslab is acceptable and we
				 * want the current one since its cache hot
				 */
				discard_slab(s, page);
				page = s->cpu_slab[cpu];
				slab_lock(page);
1418
				goto load_freelist;
Christoph Lameter's avatar
Christoph Lameter committed
1419
			}
Christoph Lameter's avatar
Christoph Lameter committed
1420
			/* New slab does not fit our expectations */
Christoph Lameter's avatar
Christoph Lameter committed
1421
1422
1423
1424
1425
1426
1427
			flush_slab(s, s->cpu_slab[cpu], cpu);
		}
		slab_lock(page);
		goto have_slab;
	}
	return NULL;
debug:
1428
	object = page->freelist;
Christoph Lameter's avatar
Christoph Lameter committed
1429
1430
1431
	if (!alloc_object_checks(s, page, object))
		goto another_slab;
	if (s->flags & SLAB_STORE_USER)
Christoph Lameter's avatar
Christoph Lameter committed
1432
		set_track(s, object, TRACK_ALLOC, addr);
1433
	trace(s, page, object, 1);
1434
	init_object(s, object, 1);
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

	page->inuse++;
	page->freelist = object[page->offset];
	slab_unlock(page);
	return object;
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
static void __always_inline *slab_alloc(struct kmem_cache *s,
				gfp_t gfpflags, int node, void *addr)
{
	struct page *page;
	void **object;
	unsigned long flags;

	local_irq_save(flags);
	page = s->cpu_slab[smp_processor_id()];
	if (unlikely(!page || !page->lockless_freelist ||
			(node != -1 && page_to_nid(page) != node)))

		object = __slab_alloc(s, gfpflags, node, addr, page);

	else {
		object = page->lockless_freelist;
		page->lockless_freelist = object[page->offset];
	}
	local_irq_restore(flags);
	return object;
Christoph Lameter's avatar
Christoph Lameter committed
1472
1473
1474
1475
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
Christoph Lameter's avatar
Christoph Lameter committed
1476
	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
Christoph Lameter's avatar
Christoph Lameter committed
1477
1478
1479
1480
1481
1482
}
EXPORT_SYMBOL(kmem_cache_alloc);

#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
Christoph Lameter's avatar
Christoph Lameter committed
1483
	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
Christoph Lameter's avatar
Christoph Lameter committed
1484
1485
1486
1487
1488
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
#endif

/*
1489
1490
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
Christoph Lameter's avatar
Christoph Lameter committed
1491
 *
1492
1493
1494
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
Christoph Lameter's avatar
Christoph Lameter committed
1495
 */
1496
static void __slab_free(struct kmem_cache *s, struct page *page,
Christoph Lameter's avatar
Christoph Lameter committed
1497
					void *x, void *addr)
Christoph Lameter's avatar
Christoph Lameter committed
1498
1499
1500
1501
1502
1503
{
	void *prior;
	void **object = (void *)x;

	slab_lock(page);

1504
	if (unlikely(SlabDebug(page)))
Christoph Lameter's avatar
Christoph Lameter committed
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
		goto debug;
checks_ok:
	prior = object[page->offset] = page->freelist;
	page->freelist = object;
	page->inuse--;

	if (unlikely(PageActive(page)))
		/*
		 * Cpu slabs are never on partial lists and are
		 * never freed.
		 */
		goto out_unlock;

	if (unlikely(!page->inuse))
		goto slab_empty;

	/*
	 * Objects left in the slab. If it
	 * was not on the partial list before
	 * then add it.
	 */
	if (unlikely(!prior))
Christoph Lameter's avatar
Christoph Lameter committed
1527
		add_partial(get_node(s, page_to_nid(page)), page);
Christoph Lameter's avatar
Christoph Lameter committed
1528
1529
1530
1531
1532
1533
1534
1535

out_unlock:
	slab_unlock(page);
	return;

slab_empty:
	if (prior)
		/*
Christoph Lameter's avatar
Christoph Lameter committed
1536
		 * Slab still on the partial list.
Christoph Lameter's avatar
Christoph Lameter committed
1537
1538
1539
1540
1541
1542
1543
1544
		 */
		remove_partial(s, page);

	slab_unlock(page);
	discard_slab(s, page);
	return;

debug:
Christoph Lameter's avatar
Christoph Lameter committed
1545
1546
	if (!free_object_checks(s, page, x))
		goto out_unlock;
1547
1548
	if (!PageActive(page) && !page->freelist)
		remove_full(s, page);
Christoph Lameter's avatar
Christoph Lameter committed
1549
1550
	if (s->flags & SLAB_STORE_USER)
		set_track(s, x, TRACK_FREE, addr);
1551
	trace(s, page, object, 0);
1552
	init_object(s, object, 0);
Christoph Lameter's avatar
Christoph Lameter committed
1553
	goto checks_ok;
Christoph Lameter's avatar
Christoph Lameter committed
1554
1555
}

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
static void __always_inline slab_free(struct kmem_cache *s,
			struct page *page, void *x, void *addr)
{
	void **object = (void *)x;
	unsigned long flags;

	local_irq_save(flags);
	if (likely(page == s->cpu_slab[smp_processor_id()] &&
						!SlabDebug(page))) {
		object[page->offset] = page->lockless_freelist;
		page->lockless_freelist = object;
	} else
		__slab_free(s, page, x, addr);

	local_irq_restore(flags);
}

Christoph Lameter's avatar
Christoph Lameter committed
1584
1585
void kmem_cache_free(struct kmem_cache *s, void *x)
{
Christoph Lameter's avatar
Christoph Lameter committed
1586
	struct page *page;
Christoph Lameter's avatar
Christoph Lameter committed
1587

1588
	page = virt_to_head_page(x);
Christoph Lameter's avatar
Christoph Lameter committed
1589

Christoph Lameter's avatar
Christoph Lameter committed
1590
	slab_free(s, page, x, __builtin_return_address(0));
Christoph Lameter's avatar
Christoph Lameter committed
1591
1592
1593
1594
1595
1596
}
EXPORT_SYMBOL(kmem_cache_free);

/* Figure out on which slab object the object resides */
static struct page *get_object_page(const void *x)
{
1597
	struct page *page = virt_to_head_page(x);
Christoph Lameter's avatar
Christoph Lameter committed
1598
1599
1600
1601
1602
1603
1604
1605

	if (!PageSlab(page))
		return NULL;

	return page;
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
1606
1607
1608
1609
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
Christoph Lameter's avatar
Christoph Lameter committed
1610
1611
1612
1613
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
Christoph Lameter's avatar
Christoph Lameter committed
1614
 * must be moved on and off the partial lists and is therefore a factor in
Christoph Lameter's avatar
Christoph Lameter committed
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER;
static int slub_min_objects = DEFAULT_MIN_OBJECTS;

/*
 * Merge control. If this is set then no merging of slab caches will occur.
Christoph Lameter's avatar
Christoph Lameter committed
1630
 * (Could be removed. This was introduced to pacify the merge skeptics.)
Christoph Lameter's avatar
Christoph Lameter committed
1631
1632
1633
1634
1635
1636
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
Christoph Lameter's avatar
Christoph Lameter committed
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
 * unused space left. We go to a higher order if more than 1/8th of the slab
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
Christoph Lameter's avatar
Christoph Lameter committed
1648
 *
Christoph Lameter's avatar
Christoph Lameter committed
1649
1650
1651
1652
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
Christoph Lameter's avatar
Christoph Lameter committed
1653
 *
Christoph Lameter's avatar
Christoph Lameter committed
1654
1655
1656
1657
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
Christoph Lameter's avatar
Christoph Lameter committed
1658
 */
1659
1660
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
Christoph Lameter's avatar
Christoph Lameter committed
1661
1662
1663
1664
{
	int order;
	int rem;

1665
1666
1667
	for (order = max(slub_min_order,
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
Christoph Lameter's avatar
Christoph Lameter committed
1668

1669
		unsigned long slab_size = PAGE_SIZE << order;
Christoph Lameter's avatar
Christoph Lameter committed
1670

1671
		if (slab_size < min_objects * size)
Christoph Lameter's avatar
Christoph Lameter committed
1672
1673
1674
1675
			continue;

		rem = slab_size % size;

1676
		if (rem <= slab_size / fract_leftover)
Christoph Lameter's avatar
Christoph Lameter committed
1677
1678
1679
			break;

	}
Christoph Lameter's avatar
Christoph Lameter committed
1680

Christoph Lameter's avatar
Christoph Lameter committed
1681
1682
1683
	return order;
}

1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
static inline int calculate_order(int size)
{
	int order;
	int min_objects;
	int fraction;

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
	while (min_objects > 1) {
		fraction = 8;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	if (order <= MAX_ORDER)
		return order;
	return -ENOSYS;
}

Christoph Lameter's avatar
Christoph Lameter committed
1728
/*
Christoph Lameter's avatar
Christoph Lameter committed
1729
 * Figure out what the alignment of the objects will be.
Christoph Lameter's avatar
Christoph Lameter committed
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
	 * If the user wants hardware cache aligned objects then
	 * follow that suggestion if the object is sufficiently
	 * large.
	 *
	 * The hardware cache alignment cannot override the
	 * specified alignment though. If that is greater
	 * then use it.
	 */
1743
	if ((flags & SLAB_HWCACHE_ALIGN) &&
1744
1745
			size > cache_line_size() / 2)
		return max_t(unsigned long, align, cache_line_size());
Christoph Lameter's avatar
Christoph Lameter committed
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758

	if (align < ARCH_SLAB_MINALIGN)
		return ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

static void init_kmem_cache_node(struct kmem_cache_node *n)
{
	n->nr_partial = 0;
	atomic_long_set(&n->nr_slabs, 0);
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
1759
	INIT_LIST_HEAD(&n->full);
Christoph Lameter's avatar
Christoph Lameter committed
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
}

#ifdef CONFIG_NUMA
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
 * when allocating for the kmalloc_node_cache.
 */
static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
								int node)
{
	struct page *page;
	struct kmem_cache_node *n;

	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));

	page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
	/* new_slab() disables interupts */
	local_irq_enable();

	BUG_ON(!page);
	n = page->freelist;
	BUG_ON(!n);
	page->freelist = get_freepointer(kmalloc_caches, n);
	page->inuse++;
	kmalloc_caches->node[node] = n;
	init_object(kmalloc_caches, n, 1);
	init_kmem_cache_node(n);
	atomic_long_inc(&n->nr_slabs);
Christoph Lameter's avatar
Christoph Lameter committed
1792
	add_partial(n, page);
Christoph Lameter's avatar
Christoph Lameter committed
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
	return n;
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = s->node[node];
		if (n && n != &s->local_node)
			kmem_cache_free(kmalloc_caches, n);
		s->node[node] = NULL;
	}
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	int node;
	int local_node;

	if (slab_state >= UP)
		local_node = page_to_nid(virt_to_page(s));
	else
		local_node = 0;

	for_each_online_node(node) {
		struct kmem_cache_node *n;

		if (local_node == node)
			n = &s->local_node;
		else {
			if (slab_state == DOWN) {
				n = early_kmem_cache_node_alloc(gfpflags,
								node);
				continue;
			}
			n = kmem_cache_alloc_node(kmalloc_caches,
							gfpflags, node);

			if (!n) {
				free_kmem_cache_nodes(s);
				return 0;
			}

		}
		s->node[node] = n;
		init_kmem_cache_node(n);
	}
	return 1;
}
#else
static void free_kmem_cache_nodes(struct kmem_cache *s)
{
}

static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
{
	init_kmem_cache_node(&s->local_node);
	return 1;
}
#endif

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
static int calculate_sizes(struct kmem_cache *s)
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;

	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1871
			!s->ctor)
Christoph Lameter's avatar
Christoph Lameter committed
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;

	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

1883
#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter's avatar
Christoph Lameter committed
1884