slab.c 108 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
Ingo Molnar's avatar
Ingo Molnar committed
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
91
92
93
94
95
96
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
Linus Torvalds's avatar
Linus Torvalds committed
98
99
100
101
102
103
104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
108
#include	<linux/mutex.h>
Linus Torvalds's avatar
Linus Torvalds committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
175
176
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds's avatar
Linus Torvalds committed
178
#else
179
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
Linus Torvalds's avatar
Linus Torvalds committed
180
181
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds's avatar
Linus Torvalds committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

204
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
205
206
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207
208
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
209
210
211
212
213
214
215
216
217

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
218
219
220
221
222
223
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
Linus Torvalds's avatar
Linus Torvalds committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
243
	struct rcu_head head;
244
	struct kmem_cache *cachep;
245
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
Andrew Morton's avatar
Andrew Morton committed
266
267
268
269
270
271
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
Linus Torvalds's avatar
Linus Torvalds committed
272
273
};

Andrew Morton's avatar
Andrew Morton committed
274
275
276
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
277
278
279
280
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
281
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
282
283
284
};

/*
285
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
286
287
 */
struct kmem_list3 {
288
289
290
291
292
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
293
	unsigned int colour_next;	/* Per-node cache coloring */
294
295
296
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
297
298
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
299
300
};

301
302
303
304
305
306
307
308
309
310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
Andrew Morton's avatar
Andrew Morton committed
311
312
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
313
 */
314
static __always_inline int index_of(const size_t size)
315
{
316
317
	extern void __bad_size(void);

318
319
320
321
322
323
324
325
326
327
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
328
		__bad_size();
329
	} else
330
		__bad_size();
331
332
333
334
335
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
336

Pekka Enberg's avatar
Pekka Enberg committed
337
static void kmem_list3_init(struct kmem_list3 *parent)
338
339
340
341
342
343
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
344
	parent->colour_next = 0;
345
346
347
348
349
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
350
351
352
353
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
354
355
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
356
357
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
358
359
360
361
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
362
363

/*
364
 * struct kmem_cache
Linus Torvalds's avatar
Linus Torvalds committed
365
366
367
 *
 * manages a cache.
 */
368

369
struct kmem_cache {
Linus Torvalds's avatar
Linus Torvalds committed
370
/* 1) per-cpu data, touched during every alloc/free */
371
	struct array_cache *array[NR_CPUS];
372
/* 2) Cache tunables. Protected by cache_chain_mutex */
373
374
375
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
376

377
	unsigned int buffer_size;
378
/* 3) touched by every alloc & free from the backend */
379
	struct kmem_list3 *nodelists[MAX_NUMNODES];
380

Andrew Morton's avatar
Andrew Morton committed
381
382
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
Linus Torvalds's avatar
Linus Torvalds committed
383

384
/* 4) cache_grow/shrink */
Linus Torvalds's avatar
Linus Torvalds committed
385
	/* order of pgs per slab (2^n) */
386
	unsigned int gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
387
388

	/* force GFP flags, e.g. GFP_DMA */
389
	gfp_t gfpflags;
Linus Torvalds's avatar
Linus Torvalds committed
390

Andrew Morton's avatar
Andrew Morton committed
391
	size_t colour;			/* cache colouring range */
392
	unsigned int colour_off;	/* colour offset */
393
	struct kmem_cache *slabp_cache;
394
	unsigned int slab_size;
Andrew Morton's avatar
Andrew Morton committed
395
	unsigned int dflags;		/* dynamic flags */
Linus Torvalds's avatar
Linus Torvalds committed
396
397

	/* constructor func */
398
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
399
400

	/* de-constructor func */
401
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
402

403
/* 5) cache creation/removal */
404
405
	const char *name;
	struct list_head next;
Linus Torvalds's avatar
Linus Torvalds committed
406

407
/* 6) statistics */
Linus Torvalds's avatar
Linus Torvalds committed
408
#if STATS
409
410
411
412
413
414
415
416
417
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
418
	unsigned long node_overflow;
419
420
421
422
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
Linus Torvalds's avatar
Linus Torvalds committed
423
424
#endif
#if DEBUG
425
426
427
428
429
430
431
432
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
433
434
435
436
437
438
439
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
440
441
442
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
443
 *
Adrian Bunk's avatar
Adrian Bunk committed
444
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
445
446
447
448
449
450
451
452
453
454
455
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
Andrew Morton's avatar
Andrew Morton committed
456
457
458
459
460
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
461
462
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
463
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
464
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
465
466
467
468
469
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
470
471
472
473
474
475
476
477
478
479
480
481
482
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
483
#define	STATS_INC_NODEFREES(x)	do { } while (0)
484
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
485
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
486
487
488
489
490
491
492
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
Andrew Morton's avatar
Andrew Morton committed
493
494
/*
 * Magic nums for obj red zoning.
Linus Torvalds's avatar
Linus Torvalds committed
495
496
497
498
499
500
501
502
503
504
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

Andrew Morton's avatar
Andrew Morton committed
505
506
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
509
510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
512
 * 		redzone word.
513
514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Morton's avatar
Andrew Morton committed
515
516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
519
{
520
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
521
522
}

523
static int obj_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
524
{
525
	return cachep->obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
526
527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
529
530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
532
533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
535
536
537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
541
542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
544
545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
547
548
549
550
}

#else

551
552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
Linus Torvalds's avatar
Linus Torvalds committed
553
554
555
556
557
558
559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
Andrew Morton's avatar
Andrew Morton committed
560
561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
Linus Torvalds's avatar
Linus Torvalds committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

Andrew Morton's avatar
Andrew Morton committed
581
582
583
584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
Linus Torvalds's avatar
Linus Torvalds committed
585
 */
586
587
588
589
590
591
592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593
594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595
	BUG_ON(!PageSlab(page));
596
597
598
599
600
601
602
603
604
605
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
606
607
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
608
	BUG_ON(!PageSlab(page));
609
610
	return (struct slab *)page->lru.prev;
}
Linus Torvalds's avatar
Linus Torvalds committed
611

612
613
614
615
616
617
618
619
620
621
622
623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624
625
626
627
628
629
630
631
632
633
634
635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

Andrew Morton's avatar
Andrew Morton committed
636
637
638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
656
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
657
658
659
660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
662
static struct arraycache_init initarray_generic =
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
664
665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
667
668
669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
671
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
Linus Torvalds's avatar
Linus Torvalds committed
674
675
676
677
#endif
};

/* Guard access to the cache-chain. */
Ingo Molnar's avatar
Ingo Molnar committed
678
static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
679
680
681
static struct list_head cache_chain;

/*
Andrew Morton's avatar
Andrew Morton committed
682
683
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
Linus Torvalds's avatar
Linus Torvalds committed
684
685
686
687
688
689
690
691
692
693
694
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
695
696
	PARTIAL_AC,
	PARTIAL_L3,
Linus Torvalds's avatar
Linus Torvalds committed
697
698
699
	FULL
} g_cpucache_up;

700
701
702
703
704
705
706
707
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

Linus Torvalds's avatar
Linus Torvalds committed
708
709
static DEFINE_PER_CPU(struct work_struct, reap_work);

Andrew Morton's avatar
Andrew Morton committed
710
711
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
712
static void enable_cpucache(struct kmem_cache *cachep);
713
static void cache_reap(void *unused);
714
static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds's avatar
Linus Torvalds committed
715

716
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
717
718
719
720
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
721
722
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
723
724
725
726
727
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
728
729
730
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
731
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
732
733
734
735
736
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
737
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
738
739
740
741
742
743
744
745
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

746
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
747
748
749
750
751
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

752
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
753
{
754
755
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
756

Andrew Morton's avatar
Andrew Morton committed
757
758
759
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
760
761
762
763
764
765
766
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
767

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
816
817
818
819
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

Andrew Morton's avatar
Andrew Morton committed
820
821
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
822
823
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
824
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
825
826
827
	dump_stack();
}

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
843
		node = first_node(node_online_map);
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
886
		init_reap_node(cpu);
Linus Torvalds's avatar
Linus Torvalds committed
887
888
889
890
891
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

892
static struct array_cache *alloc_arraycache(int node, int entries,
893
					    int batchcount)
Linus Torvalds's avatar
Linus Torvalds committed
894
{
895
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
896
897
	struct array_cache *nc = NULL;

898
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds's avatar
Linus Torvalds committed
899
900
901
902
903
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
904
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
905
906
907
908
	}
	return nc;
}

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

933
#ifdef CONFIG_NUMA
934
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
935
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
936

Pekka Enberg's avatar
Pekka Enberg committed
937
static struct array_cache **alloc_alien_cache(int node, int limit)
938
939
{
	struct array_cache **ac_ptr;
940
	int memsize = sizeof(void *) * MAX_NUMNODES;
941
942
943
944
945
946
947
948
949
950
951
952
953
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
954
				for (i--; i <= 0; i--)
955
956
957
958
959
960
961
962
963
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
964
static void free_alien_cache(struct array_cache **ac_ptr)
965
966
967
968
969
970
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
971
	    kfree(ac_ptr[i]);
972
973
974
	kfree(ac_ptr);
}

975
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
976
				struct array_cache *ac, int node)
977
978
979
980
981
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
982
983
984
985
986
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
987
988
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
989

990
		free_block(cachep, ac->entry, ac->avail, node);
991
992
993
994
995
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

996
997
998
999
1000
1001
1002
1003
1004
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1005
1006

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1007
1008
1009
1010
1011
1012
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1013
1014
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1015
{
1016
	int i = 0;
1017
1018
1019
1020
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1021
		ac = alien[i];
1022
1023
1024
1025
1026
1027
1028
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
		spin_lock(&alien->lock);
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1063
#else
1064

1065
#define drain_alien_cache(cachep, alien) do { } while (0)
1066
#define reap_alien(cachep, l3) do { } while (0)
1067

1068
1069
1070
1071
1072
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1073
1074
1075
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1076

1077
1078
1079
1080
1081
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

1082
1083
#endif

1084
static int cpuup_callback(struct notifier_block *nfb,
1085
				    unsigned long action, void *hcpu)
Linus Torvalds's avatar
Linus Torvalds committed
1086
1087
{
	long cpu = (long)hcpu;
1088
	struct kmem_cache *cachep;
1089
1090
1091
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
Linus Torvalds's avatar
Linus Torvalds committed
1092
1093
1094

	switch (action) {
	case CPU_UP_PREPARE:
Ingo Molnar's avatar
Ingo Molnar committed
1095
		mutex_lock(&cache_chain_mutex);
Andrew Morton's avatar
Andrew Morton committed
1096
1097
		/*
		 * We need to do this right in the beginning since
1098
1099
1100
1101
1102
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

Linus Torvalds's avatar
Linus Torvalds committed
1103
		list_for_each_entry(cachep, &cache_chain, next) {
Andrew Morton's avatar
Andrew Morton committed
1104
1105
			/*
			 * Set up the size64 kmemlist for cpu before we can
1106
1107
1108
1109
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
Andrew Morton's avatar
Andrew Morton committed
1110
1111
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1112
1113
1114
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1115
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1116

1117
1118
1119
1120
1121
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1122
1123
				cachep->nodelists[node] = l3;
			}
Linus Torvalds's avatar
Linus Torvalds committed
1124

1125
1126
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
Andrew Morton's avatar
Andrew Morton committed
1127
1128
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1129
1130
1131
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

Andrew Morton's avatar
Andrew Morton committed
1132
1133
1134
1135
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1136
		list_for_each_entry(cachep, &cache_chain, next) {
1137
			struct array_cache *nc;
1138
1139
			struct array_cache *shared;
			struct array_cache **alien;
1140

1141
			nc = alloc_arraycache(node, cachep->limit,
1142
						cachep->batchcount);
Linus Torvalds's avatar
Linus Torvalds committed
1143
1144
			if (!nc)
				goto bad;
1145
1146
1147
1148
1149
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1150

1151
1152
1153
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
Linus Torvalds's avatar
Linus Torvalds committed
1154
			cachep->array[cpu] = nc;
1155
1156
1157
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1158
1159
1160
1161
1162
1163
1164
1165
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1166
			}
1167
1168
1169
1170
1171
1172
1173
1174
1175
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
Linus Torvalds's avatar
Linus Torvalds committed
1176
		}
Ingo Molnar's avatar
Ingo Molnar committed
1177
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1178
1179
1180
1181
1182
1183
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1184
1185
1186
1187
1188
1189
1190
1191
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
Linus Torvalds's avatar
Linus Torvalds committed
1192
1193
		/* fall thru */
	case CPU_UP_CANCELED:
Ingo Molnar's avatar
Ingo Molnar committed
1194
		mutex_lock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1195
1196
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1197
1198
			struct array_cache *shared;
			struct array_cache **alien;
1199
			cpumask_t mask;
Linus Torvalds's avatar
Linus Torvalds committed
1200

1201
			mask = node_to_cpumask(node);
Linus Torvalds's avatar
Linus Torvalds committed
1202
1203
1204
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1205
1206
1207
			l3 = cachep->nodelists[node];

			if (!l3)
1208
				goto free_array_cache;
1209

1210
			spin_lock_irq(&l3->list_lock);
1211
1212
1213
1214

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1215
				free_block(cachep, nc->entry, nc->avail, node);
1216
1217

			if (!cpus_empty(mask)) {
1218
				spin_unlock_irq(&l3->list_lock);
1219
				goto free_array_cache;
1220
			}
1221

1222
1223
			shared = l3->shared;
			if (shared) {
1224
				free_block(cachep, l3->shared->entry,
1225
					   l3->shared->avail, node);
1226
1227
1228
				l3->shared = NULL;
			}

1229
1230
1231
1232
1233
1234
1235
1236
1237
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1238
			}
1239
free_array_cache:
Linus Torvalds's avatar
Linus Torvalds committed
1240
1241
			kfree(nc);
		}
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
Ingo Molnar's avatar
Ingo Molnar committed
1256
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1257
1258
1259
1260
		break;
#endif
	}
	return NOTIFY_OK;
Andrew Morton's avatar
Andrew Morton committed
1261
bad:
Ingo Molnar's avatar
Ingo Molnar committed
1262
	mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1263
1264
1265
1266
1267
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1268
1269
1270
/*
 * swap the static kmem_list3 with kmalloced memory
 */
Andrew Morton's avatar
Andrew Morton committed
1271
1272
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

Andrew Morton's avatar
Andrew Morton committed
1287
1288
1289
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
Linus Torvalds's avatar
Linus Torvalds committed
1290
1291
1292
1293
1294
1295
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1296
	int i;
1297
	int order;
1298
1299
1300
1301
1302
1303

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
Andrew Morton's avatar
Andrew Morton committed
1314
1315
1316
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1317
1318
1319
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
Linus Torvalds's avatar
Linus Torvalds committed
1320
	 * 2) Create the first kmalloc cache.
1321
	 *    The struct kmem_cache for the new cache is allocated normally.
1322
1323
1324
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
Linus Torvalds's avatar
Linus Torvalds committed
1325
1326
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1327
1328
1329
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds's avatar
Linus Torvalds committed
1330
1331
1332
1333
1334
1335
1336
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1337
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds's avatar
Linus Torvalds committed
1338

Andrew Morton's avatar
Andrew Morton committed
1339
1340
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
Linus Torvalds's avatar
Linus Torvalds committed
1341

1342
1343
1344
1345
1346
1347
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1348
	BUG_ON(!cache_cache.num);
1349
	cache_cache.gfporder = order;
1350
1351
1352
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
Linus Torvalds's avatar
Linus Torvalds committed
1353
1354
1355
1356
1357

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

Andrew Morton's avatar
Andrew Morton committed
1358
1359
1360
1361
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1362
1363
1364
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Morton's avatar
Andrew Morton committed
1365
1366
1367
1368
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1369

Andrew Morton's avatar
Andrew Morton committed
1370
	if (INDEX_AC != INDEX_L3) {
1371
		sizes[INDEX_L3].cs_cachep =
Andrew Morton's avatar
Andrew Morton committed
1372
1373
1374
1375
1376
1377
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1378

Linus Torvalds's avatar
Linus Torvalds committed
1379
	while (sizes->cs_size != ULONG_MAX) {
1380
1381
		/*
		 * For performance, all the general caches are L1 aligned.
Linus Torvalds's avatar
Linus Torvalds committed
1382
1383
1384
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will