slab.c 118 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
Ingo Molnar's avatar
Ingo Molnar committed
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119
120
121
122
123
124

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
125
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
146
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
147
148
149
150
151
152
153

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
154
# define CREATE_MASK	(SLAB_RED_ZONE | \
Linus Torvalds's avatar
Linus Torvalds committed
155
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156
			 SLAB_CACHE_DMA | \
157
			 SLAB_STORE_USER | \
Linus Torvalds's avatar
Linus Torvalds committed
158
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
160
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
161
#else
162
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
163
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
164
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
166
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

188
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
189
190
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
191
192
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
209
	struct rcu_head head;
210
	struct kmem_cache *cachep;
211
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
212
213
};

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
252
	spinlock_t lock;
253
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
254
255
256
257
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
Linus Torvalds's avatar
Linus Torvalds committed
258
259
};

Andrew Morton's avatar
Andrew Morton committed
260
261
262
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
263
264
265
266
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
267
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
268
269
270
};

/*
271
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
272
273
 */
struct kmem_list3 {
274
275
276
277
278
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
279
	unsigned int colour_next;	/* Per-node cache coloring */
280
281
282
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
283
284
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
285
286
};

287
288
289
/*
 * Need this for bootstrapping a per node allocator.
 */
290
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
291
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
292
#define	CACHE_CACHE 0
293
294
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
295

296
297
298
299
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
300
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
301
static void cache_reap(struct work_struct *unused);
302

303
/*
Andrew Morton's avatar
Andrew Morton committed
304
305
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
306
 */
307
static __always_inline int index_of(const size_t size)
308
{
309
310
	extern void __bad_size(void);

311
312
313
314
315
316
317
318
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
319
#include <linux/kmalloc_sizes.h>
320
#undef CACHE
321
		__bad_size();
322
	} else
323
		__bad_size();
324
325
326
	return 0;
}

327
328
static int slab_early_init = 1;

329
330
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
331

Pekka Enberg's avatar
Pekka Enberg committed
332
static void kmem_list3_init(struct kmem_list3 *parent)
333
334
335
336
337
338
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
339
	parent->colour_next = 0;
340
341
342
343
344
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
345
346
347
348
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
349
350
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
351
352
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
353
354
355
356
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
357
358
359
360
361

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
362
363
364
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
365
 *
Adrian Bunk's avatar
Adrian Bunk committed
366
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
367
368
369
370
371
372
373
374
375
376
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
377
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
378
379
380
381
382
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
383
384
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
385
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
386
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
387
388
389
390
391
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
392
393
394
395
396
397
398
399
400
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
401
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
402
403
404
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
405
#define	STATS_INC_NODEFREES(x)	do { } while (0)
406
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
407
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
408
409
410
411
412
413
414
415
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
416
417
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
418
 * 0		: objp
419
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
420
421
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
422
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
423
 * 		redzone word.
424
425
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Morton's avatar
Andrew Morton committed
426
427
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
428
 */
429
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
430
{
431
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
432
433
}

434
static int obj_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
435
{
436
	return cachep->obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
437
438
}

439
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
440
441
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
442
443
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
444
445
}

446
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
447
448
449
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
450
451
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
452
					      REDZONE_ALIGN);
453
454
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
455
456
}

457
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
458
459
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
460
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
461
462
463
464
}

#else

465
466
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
467
468
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
469
470
471
472
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

473
#ifdef CONFIG_TRACING
474
475
476
477
478
479
480
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
481
482
483
484
485
486
487
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

Andrew Morton's avatar
Andrew Morton committed
488
489
490
491
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
Linus Torvalds's avatar
Linus Torvalds committed
492
 */
493
494
495
496
497
498
499
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
500
	page = compound_head(page);
501
	BUG_ON(!PageSlab(page));
502
503
504
505
506
507
508
509
510
511
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
512
	BUG_ON(!PageSlab(page));
513
514
	return (struct slab *)page->lru.prev;
}
Linus Torvalds's avatar
Linus Torvalds committed
515

516
517
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
518
	struct page *page = virt_to_head_page(obj);
519
520
521
522
523
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
524
	struct page *page = virt_to_head_page(obj);
525
526
527
	return page_get_slab(page);
}

528
529
530
531
532
533
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

534
535
536
537
538
539
540
541
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
542
{
543
544
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545
546
}

Andrew Morton's avatar
Andrew Morton committed
547
548
549
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
567
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
568
569
570
571
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
572
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
573
static struct arraycache_init initarray_generic =
574
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
575
576

/* internal cache of cache description objs */
577
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
578
static struct kmem_cache cache_cache = {
579
	.nodelists = cache_cache_nodelists,
580
581
582
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
583
	.buffer_size = sizeof(struct kmem_cache),
584
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
585
586
};

587
588
#define BAD_ALIEN_MAGIC 0x01020304ul

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

609
610
611
612
613
614
615
616
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
617
618
619
620
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
621
 */
622
623
624
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

625
static void init_node_lock_keys(int q)
626
{
627
628
	struct cache_sizes *s = malloc_sizes;

629
630
631
632
633
634
635
636
637
638
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
639
			continue;
640
641
642
643
644
645
646
647
648
649
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
650
			continue;
651
652
653
654
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
655
		}
656
657
	}
}
658
659
660
661
662
663
664
665

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
666
#else
667
668
669
670
static void init_node_lock_keys(int q)
{
}

671
static inline void init_lock_keys(void)
672
673
674
675
{
}
#endif

676
/*
677
 * Guard access to the cache-chain.
678
 */
Ingo Molnar's avatar
Ingo Molnar committed
679
static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
680
681
static struct list_head cache_chain;

682
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
683

684
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
685
686
687
688
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
689
690
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
691
692
693
694
695
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
696
697
698
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
699
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
700
#endif
701
702
703
	if (!size)
		return ZERO_SIZE_PTR;

Linus Torvalds's avatar
Linus Torvalds committed
704
705
706
707
	while (size > csizep->cs_size)
		csizep++;

	/*
708
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
709
710
711
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
712
#ifdef CONFIG_ZONE_DMA
Linus Torvalds's avatar
Linus Torvalds committed
713
714
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
715
#endif
Linus Torvalds's avatar
Linus Torvalds committed
716
717
718
	return csizep->cs_cachep;
}

719
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
720
721
722
723
{
	return __find_general_cachep(size, gfpflags);
}

724
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
725
{
726
727
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
728

Andrew Morton's avatar
Andrew Morton committed
729
730
731
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
732
733
734
735
736
737
738
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
739

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
788
789
}

790
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
791

Andrew Morton's avatar
Andrew Morton committed
792
793
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
794
795
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
796
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
797
798
799
	dump_stack();
}

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

816
817
818
819
820
821
822
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
823
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
824
825
826
827
828

static void init_reap_node(int cpu)
{
	int node;

829
	node = next_node(cpu_to_mem(cpu), node_online_map);
830
	if (node == MAX_NUMNODES)
831
		node = first_node(node_online_map);
832

833
	per_cpu(slab_reap_node, cpu) = node;
834
835
836
837
}

static void next_reap_node(void)
{
838
	int node = __this_cpu_read(slab_reap_node);
839
840
841
842

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
843
	__this_cpu_write(slab_reap_node, node);
844
845
846
847
848
849
850
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
851
852
853
854
855
856
857
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
858
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
859
{
860
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
861
862
863
864
865
866

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
867
	if (keventd_up() && reap_work->work.func == NULL) {
868
		init_reap_node(cpu);
869
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
870
871
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
872
873
874
	}
}

875
static struct array_cache *alloc_arraycache(int node, int entries,
876
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
877
{
878
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
879
880
	struct array_cache *nc = NULL;

881
	nc = kmalloc_node(memsize, gfp, node);
882
883
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
884
	 * However, when such objects are allocated or transferred to another
885
886
887
888
889
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
890
891
892
893
894
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
895
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
896
897
898
899
	}
	return nc;
}

900
901
902
903
904
905
906
907
908
909
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
910
	int nr = min3(from->avail, max, to->limit - to->avail);
911
912
913
914
915
916
917
918
919
920
921
922

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

923
924
925
926
927
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

928
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

948
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
949
950
951
952
953
954
955
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

956
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
957
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
958

959
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
960
961
{
	struct array_cache **ac_ptr;
962
	int memsize = sizeof(void *) * nr_node_ids;
963
964
965
966
	int i;

	if (limit > 1)
		limit = 12;
967
	ac_ptr = kzalloc_node(memsize, gfp, node);
968
969
	if (ac_ptr) {
		for_each_node(i) {
970
			if (i == node || !node_online(i))
971
				continue;
972
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
973
			if (!ac_ptr[i]) {
974
				for (i--; i >= 0; i--)
975
976
977
978
979
980
981
982
983
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
984
static void free_alien_cache(struct array_cache **ac_ptr)
985
986
987
988
989
990
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
991
	    kfree(ac_ptr[i]);
992
993
994
	kfree(ac_ptr);
}

995
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
996
				struct array_cache *ac, int node)
997
998
999
1000
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {