slab.c 121 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
Linus Torvalds's avatar
Linus Torvalds committed
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
93
94
95
96
97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
100
101
102
103
104
105
106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
120

121
122
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
123
124
125
126
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

127
128
#include <trace/events/kmem.h>

129
130
#include	"internal.h"

Linus Torvalds's avatar
Linus Torvalds committed
131
/*
132
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
153
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
154
155
156
157
158

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

159
160
161
162
163
164
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
165
166
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
167
# define CREATE_MASK	(SLAB_RED_ZONE | \
Linus Torvalds's avatar
Linus Torvalds committed
168
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
169
			 SLAB_CACHE_DMA | \
170
			 SLAB_STORE_USER | \
Linus Torvalds's avatar
Linus Torvalds committed
171
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
173
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
174
#else
175
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
179
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

201
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
202
203
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
204
205
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
222
	struct rcu_head head;
223
	struct kmem_cache *cachep;
224
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
225
226
};

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
266
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
267
268
269
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
270
271
272
273
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
274
			 */
Linus Torvalds's avatar
Linus Torvalds committed
275
276
};

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
294
295
296
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
297
298
299
300
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
301
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
302
303
304
};

/*
305
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
306
307
 */
struct kmem_list3 {
308
309
310
311
312
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
313
	unsigned int colour_next;	/* Per-node cache coloring */
314
315
316
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
317
318
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
319
320
};

321
322
323
/*
 * Need this for bootstrapping a per node allocator.
 */
324
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
326
#define	CACHE_CACHE 0
327
328
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
329

330
331
332
333
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
334
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
335
static void cache_reap(struct work_struct *unused);
336

337
/*
Andrew Morton's avatar
Andrew Morton committed
338
339
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
340
 */
341
static __always_inline int index_of(const size_t size)
342
{
343
344
	extern void __bad_size(void);

345
346
347
348
349
350
351
352
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
353
#include <linux/kmalloc_sizes.h>
354
#undef CACHE
355
		__bad_size();
356
	} else
357
		__bad_size();
358
359
360
	return 0;
}

361
362
static int slab_early_init = 1;

363
364
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
365

Pekka Enberg's avatar
Pekka Enberg committed
366
static void kmem_list3_init(struct kmem_list3 *parent)
367
368
369
370
371
372
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
373
	parent->colour_next = 0;
374
375
376
377
378
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
379
380
381
382
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
383
384
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
385
386
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
387
388
389
390
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
391
392
393
394
395

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
396
397
398
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
399
 *
Adrian Bunk's avatar
Adrian Bunk committed
400
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
401
402
403
404
405
406
407
408
409
410
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
411
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
412
413
414
415
416
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
417
418
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
419
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
420
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
421
422
423
424
425
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
426
427
428
429
430
431
432
433
434
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
435
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
436
437
438
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
439
#define	STATS_INC_NODEFREES(x)	do { } while (0)
440
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
441
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
442
443
444
445
446
447
448
449
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
450
451
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
452
 * 0		: objp
453
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
454
455
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
456
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
457
 * 		redzone word.
458
 * cachep->obj_offset: The real object.
459
460
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
461
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
462
 */
463
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
464
{
465
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
466
467
}

468
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
469
470
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
471
472
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
473
474
}

475
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
476
477
478
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
479
		return (unsigned long long *)(objp + cachep->size -
480
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
481
					      REDZONE_ALIGN);
482
	return (unsigned long long *) (objp + cachep->size -
483
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
484
485
}

486
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
487
488
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
489
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
490
491
492
493
}

#else

494
#define obj_offset(x)			0
495
496
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
497
498
499
500
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

501
#ifdef CONFIG_TRACING
502
503
size_t slab_buffer_size(struct kmem_cache *cachep)
{
504
	return cachep->size;
505
506
507
508
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
509
/*
510
511
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
512
 */
513
514
515
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
516
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
517

518
519
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
520
	struct page *page = virt_to_head_page(obj);
521
	return page->slab_cache;
522
523
524
525
}

static inline struct slab *virt_to_slab(const void *obj)
{
526
	struct page *page = virt_to_head_page(obj);
527
528
529

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
530
531
}

532
533
534
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
535
	return slab->s_mem + cache->size * idx;
536
537
}

538
/*
539
540
541
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
542
543
544
545
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
546
{
547
548
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
549
550
}

Andrew Morton's avatar
Andrew Morton committed
551
552
553
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
571
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
572
573
574
575
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
576
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
577
static struct arraycache_init initarray_generic =
578
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
579
580

/* internal cache of cache description objs */
581
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
582
static struct kmem_cache cache_cache = {
583
	.nodelists = cache_cache_nodelists,
584
585
586
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
587
	.size = sizeof(struct kmem_cache),
588
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
589
590
};

591
592
#define BAD_ALIEN_MAGIC 0x01020304ul

593
594
595
596
597
598
599
600
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
601
602
603
604
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
605
 */
606
607
608
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

654
static void init_node_lock_keys(int q)
655
{
656
657
	struct cache_sizes *s = malloc_sizes;

658
	if (slab_state < UP)
659
660
661
662
663
664
665
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
666
			continue;
667
668
669

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
670
671
	}
}
672
673
674
675
676
677
678
679

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
680
#else
681
682
683
684
static void init_node_lock_keys(int q)
{
}

685
static inline void init_lock_keys(void)
686
687
{
}
688
689
690
691
692
693
694
695

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
696
697
#endif

698
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
699

700
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
701
702
703
704
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
705
706
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
707
708
709
710
711
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
712
713
714
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
715
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
716
#endif
717
718
719
	if (!size)
		return ZERO_SIZE_PTR;

Linus Torvalds's avatar
Linus Torvalds committed
720
721
722
723
	while (size > csizep->cs_size)
		csizep++;

	/*
724
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
725
726
727
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
728
#ifdef CONFIG_ZONE_DMA
Linus Torvalds's avatar
Linus Torvalds committed
729
730
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
731
#endif
Linus Torvalds's avatar
Linus Torvalds committed
732
733
734
	return csizep->cs_cachep;
}

735
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736
737
738
739
{
	return __find_general_cachep(size, gfpflags);
}

740
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
741
{
742
743
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
744

Andrew Morton's avatar
Andrew Morton committed
745
746
747
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
748
749
750
751
752
753
754
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
804
805
}

806
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
807

Andrew Morton's avatar
Andrew Morton committed
808
809
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
810
811
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
812
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
813
814
815
	dump_stack();
}

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

832
833
834
835
836
837
838
839
840
841
842
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

843
844
845
846
847
848
849
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
850
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
851
852
853
854
855

static void init_reap_node(int cpu)
{
	int node;

856
	node = next_node(cpu_to_mem(cpu), node_online_map);
857
	if (node == MAX_NUMNODES)
858
		node = first_node(node_online_map);
859

860
	per_cpu(slab_reap_node, cpu) = node;
861
862
863
864
}

static void next_reap_node(void)
{
865
	int node = __this_cpu_read(slab_reap_node);
866
867
868
869

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
870
	__this_cpu_write(slab_reap_node, node);
871
872
873
874
875
876
877
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
878
879
880
881
882
883
884
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
885
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
886
{
887
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
888
889
890
891
892
893

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
894
	if (keventd_up() && reap_work->work.func == NULL) {
895
		init_reap_node(cpu);
896
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
897
898
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
899
900
901
	}
}

902
static struct array_cache *alloc_arraycache(int node, int entries,
903
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
904
{
905
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
906
907
	struct array_cache *nc = NULL;

908
	nc = kmalloc_node(memsize, gfp, node);
909
910
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
911
	 * However, when such objects are allocated or transferred to another
912
913
914
915
916
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
917
918
919
920
921
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
922
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
923
924
925
926
	}
	return nc;
}

927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

963
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1024
1025
1026
1027
1028
1029
1030
1031
1032
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1033
1034
1035
1036
1037
1038
1039
1040
1041
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1042
1043
1044
	ac->entry[ac->avail++] = objp;
}

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1055
	int nr = min3(from->avail, max, to->limit - to->avail);
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1068
1069
1070
1071
1072
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1073
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1093
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1094
1095
1096
1097
1098
1099
1100
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1101
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1102
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1103

1104
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1105
1106
{
	struct array_cache **ac_ptr;
1107
	int memsize = sizeof(void *) * nr_node_ids;
1108
1109
1110
1111
	int i;

	if (limit > 1)
		limit = 12;
1112
	ac_ptr = kzalloc_node(memsize, gfp, node);
1113
1114
	if (ac_ptr) {
		for_each_node(i) {
1115
			if (i == node || !node_online(i))
1116
				continue;
1117
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1118
			if (!ac_ptr[i]) {
1119
				for (i--; i >= 0; i--)
1120
1121
1122
1123
1124
1125
1126
1127
1128
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
1129
static void free_alien_cache(struct array_cache **ac_ptr)
1130
1131
1132
1133
1134
1135
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
1136
	    kfree(ac_ptr[i]);
1137
1138
1139
	kfree(ac_ptr);
}

1140
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1141
				struct array_cache *ac, int node)
1142
1143
1144
1145
1146
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1147
1148
1149
1150
1151
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1152
1153
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1154

1155
		free_block(cachep, ac->entry, ac->avail, node);
1156
1157
1158
1159
1160
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1161
1162
1163
1164
1165
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1166
	int node = __this_cpu_read(slab_reap_node);
1167
1168
1169

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1170
1171

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1172
1173
1174
1175
1176
1177
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1178
1179
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1180
{
1181
	int i = 0;
1182
1183
1184
1185
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1186
		ac = alien[i];
1187
1188
1189
1190
1191
1192
1193
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1194

1195
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1196
1197
1198
1199
1200
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
1201
1202
	int node;

1203
	node = numa_mem_id();
1204
1205
1206
1207
1208

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1209
	if (likely(slabp->nodeid == node))
1210
1211
		return 0;

1212
	l3 = cachep->nodelists[node];
1213
1214
1215
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1216
		spin_lock(&alien->lock);
1217
1218
1219
1220
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1221
		ac_put_obj(cachep, alien, objp);
1222
1223
1224
1225
1226
1227
1228
1229
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1230
1231
#endif

1232
1233
1234
1235
1236
1237
1238
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1239
 * Must hold slab_mutex.
1240
1241
1242
1243
1244
1245
1246
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1247
	list_for_each_entry(cachep, &slab_caches, list) {
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1263
			 * go.  slab_mutex is sufficient
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1278
1279
1280
1281
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1282
	int node = cpu_to_mem(cpu);
1283
	const struct cpumask *mask = cpumask_of_node(node);
1284

1285
	list_for_each_entry(cachep, &slab_caches, list) {
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1305
		if (!cpumask_empty(mask)) {
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1335
	list_for_each_entry(cachep, &slab_caches, list) {
1336
1337
1338
1339
1340
1341
1342
1343
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1344
{
1345
	struct kmem_cache *cachep;
1346
	struct kmem_list3 *l3 = NULL;
1347
	int node = cpu_to_mem(cpu);
1348
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1349

1350
1351