common.c 18.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*
 * This file contains common generic and tag-based KASAN code.
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 *
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 *        Andrey Konovalov <andreyknvl@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/kmemleak.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/vmalloc.h>
#include <linux/bug.h>

#include "kasan.h"
#include "../slab.h"

static inline int in_irqentry_text(unsigned long ptr)
{
	return (ptr >= (unsigned long)&__irqentry_text_start &&
		ptr < (unsigned long)&__irqentry_text_end) ||
		(ptr >= (unsigned long)&__softirqentry_text_start &&
		 ptr < (unsigned long)&__softirqentry_text_end);
}

static inline void filter_irq_stacks(struct stack_trace *trace)
{
	int i;

	if (!trace->nr_entries)
		return;
	for (i = 0; i < trace->nr_entries; i++)
		if (in_irqentry_text(trace->entries[i])) {
			/* Include the irqentry function into the stack. */
			trace->nr_entries = i + 1;
			break;
		}
}

static inline depot_stack_handle_t save_stack(gfp_t flags)
{
	unsigned long entries[KASAN_STACK_DEPTH];
	struct stack_trace trace = {
		.nr_entries = 0,
		.entries = entries,
		.max_entries = KASAN_STACK_DEPTH,
		.skip = 0
	};

	save_stack_trace(&trace);
	filter_irq_stacks(&trace);
	if (trace.nr_entries != 0 &&
	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
		trace.nr_entries--;

	return depot_save_stack(&trace, flags);
}

static inline void set_track(struct kasan_track *track, gfp_t flags)
{
	track->pid = current->pid;
	track->stack = save_stack(flags);
}

void kasan_enable_current(void)
{
	current->kasan_depth++;
}

void kasan_disable_current(void)
{
	current->kasan_depth--;
}

void kasan_check_read(const volatile void *p, unsigned int size)
{
	check_memory_region((unsigned long)p, size, false, _RET_IP_);
}
EXPORT_SYMBOL(kasan_check_read);

void kasan_check_write(const volatile void *p, unsigned int size)
{
	check_memory_region((unsigned long)p, size, true, _RET_IP_);
}
EXPORT_SYMBOL(kasan_check_write);

#undef memset
void *memset(void *addr, int c, size_t len)
{
	check_memory_region((unsigned long)addr, len, true, _RET_IP_);

	return __memset(addr, c, len);
}

#undef memmove
void *memmove(void *dest, const void *src, size_t len)
{
	check_memory_region((unsigned long)src, len, false, _RET_IP_);
	check_memory_region((unsigned long)dest, len, true, _RET_IP_);

	return __memmove(dest, src, len);
}

#undef memcpy
void *memcpy(void *dest, const void *src, size_t len)
{
	check_memory_region((unsigned long)src, len, false, _RET_IP_);
	check_memory_region((unsigned long)dest, len, true, _RET_IP_);

	return __memcpy(dest, src, len);
}

/*
 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
 */
void kasan_poison_shadow(const void *address, size_t size, u8 value)
{
	void *shadow_start, *shadow_end;

144
145
146
147
148
149
150
	/*
	 * Perform shadow offset calculation based on untagged address, as
	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
	 * addresses to this function.
	 */
	address = reset_tag(address);

151
152
153
154
155
156
157
158
	shadow_start = kasan_mem_to_shadow(address);
	shadow_end = kasan_mem_to_shadow(address + size);

	__memset(shadow_start, value, shadow_end - shadow_start);
}

void kasan_unpoison_shadow(const void *address, size_t size)
{
159
160
161
162
163
164
165
166
167
168
	u8 tag = get_tag(address);

	/*
	 * Perform shadow offset calculation based on untagged address, as
	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
	 * addresses to this function.
	 */
	address = reset_tag(address);

	kasan_poison_shadow(address, size, tag);
169
170
171

	if (size & KASAN_SHADOW_MASK) {
		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
172
173
174
175
176

		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
			*shadow = tag;
		else
			*shadow = size & KASAN_SHADOW_MASK;
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
	}
}

static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
{
	void *base = task_stack_page(task);
	size_t size = sp - base;

	kasan_unpoison_shadow(base, size);
}

/* Unpoison the entire stack for a task. */
void kasan_unpoison_task_stack(struct task_struct *task)
{
	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
}

/* Unpoison the stack for the current task beyond a watermark sp value. */
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
{
	/*
	 * Calculate the task stack base address.  Avoid using 'current'
	 * because this function is called by early resume code which hasn't
	 * yet set up the percpu register (%gs).
	 */
	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));

	kasan_unpoison_shadow(base, watermark - base);
}

/*
 * Clear all poison for the region between the current SP and a provided
 * watermark value, as is sometimes required prior to hand-crafted asm function
 * returns in the middle of functions.
 */
void kasan_unpoison_stack_above_sp_to(const void *watermark)
{
	const void *sp = __builtin_frame_address(0);
	size_t size = watermark - sp;

	if (WARN_ON(sp > watermark))
		return;
	kasan_unpoison_shadow(sp, size);
}

void kasan_alloc_pages(struct page *page, unsigned int order)
{
224
225
226
	u8 tag;
	unsigned long i;

227
228
	if (unlikely(PageHighMem(page)))
		return;
229
230
231
232

	tag = random_tag();
	for (i = 0; i < (1 << order); i++)
		page_kasan_tag_set(page + i, tag);
233
	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
}

void kasan_free_pages(struct page *page, unsigned int order)
{
	if (likely(!PageHighMem(page)))
		kasan_poison_shadow(page_address(page),
				PAGE_SIZE << order,
				KASAN_FREE_PAGE);
}

/*
 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 * For larger allocations larger redzones are used.
 */
static inline unsigned int optimal_redzone(unsigned int object_size)
{
250
251
252
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
		return 0;

253
254
255
256
257
258
259
260
261
262
263
264
265
266
	return
		object_size <= 64        - 16   ? 16 :
		object_size <= 128       - 32   ? 32 :
		object_size <= 512       - 64   ? 64 :
		object_size <= 4096      - 128  ? 128 :
		object_size <= (1 << 14) - 256  ? 256 :
		object_size <= (1 << 15) - 512  ? 512 :
		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
}

void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
			slab_flags_t *flags)
{
	unsigned int orig_size = *size;
267
	unsigned int redzone_size;
268
269
270
271
272
273
274
	int redzone_adjust;

	/* Add alloc meta. */
	cache->kasan_info.alloc_meta_offset = *size;
	*size += sizeof(struct kasan_alloc_meta);

	/* Add free meta. */
275
276
277
	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
	     cache->object_size < sizeof(struct kasan_free_meta))) {
278
279
280
281
		cache->kasan_info.free_meta_offset = *size;
		*size += sizeof(struct kasan_free_meta);
	}

282
283
	redzone_size = optimal_redzone(cache->object_size);
	redzone_adjust = redzone_size -	(*size - cache->object_size);
284
285
286
287
	if (redzone_adjust > 0)
		*size += redzone_adjust;

	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
288
			max(*size, cache->object_size + redzone_size));
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

	/*
	 * If the metadata doesn't fit, don't enable KASAN at all.
	 */
	if (*size <= cache->kasan_info.alloc_meta_offset ||
			*size <= cache->kasan_info.free_meta_offset) {
		cache->kasan_info.alloc_meta_offset = 0;
		cache->kasan_info.free_meta_offset = 0;
		*size = orig_size;
		return;
	}

	*flags |= SLAB_KASAN;
}

size_t kasan_metadata_size(struct kmem_cache *cache)
{
	return (cache->kasan_info.alloc_meta_offset ?
		sizeof(struct kasan_alloc_meta) : 0) +
		(cache->kasan_info.free_meta_offset ?
		sizeof(struct kasan_free_meta) : 0);
}

struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
					const void *object)
{
	BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
	return (void *)object + cache->kasan_info.alloc_meta_offset;
}

struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
				      const void *object)
{
	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
	return (void *)object + cache->kasan_info.free_meta_offset;
}

void kasan_poison_slab(struct page *page)
{
328
329
330
331
	unsigned long i;

	for (i = 0; i < (1 << compound_order(page)); i++)
		page_kasan_tag_reset(page + i);
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
	kasan_poison_shadow(page_address(page),
			PAGE_SIZE << compound_order(page),
			KASAN_KMALLOC_REDZONE);
}

void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_unpoison_shadow(object, cache->object_size);
}

void kasan_poison_object_data(struct kmem_cache *cache, void *object)
{
	kasan_poison_shadow(object,
			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
			KASAN_KMALLOC_REDZONE);
}

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*
 * Since it's desirable to only call object contructors once during slab
 * allocation, we preassign tags to all such objects. Also preassign tags for
 * SLAB_TYPESAFE_BY_RCU slabs to avoid use-after-free reports.
 * For SLAB allocator we can't preassign tags randomly since the freelist is
 * stored as an array of indexes instead of a linked list. Assign tags based
 * on objects indexes, so that objects that are next to each other get
 * different tags.
 * After a tag is assigned, the object always gets allocated with the same tag.
 * The reason is that we can't change tags for objects with constructors on
 * reallocation (even for non-SLAB_TYPESAFE_BY_RCU), because the constructor
 * code can save the pointer to the object somewhere (e.g. in the object
 * itself). Then if we retag it, the old saved pointer will become invalid.
 */
static u8 assign_tag(struct kmem_cache *cache, const void *object, bool new)
{
	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
		return new ? KASAN_TAG_KERNEL : random_tag();

#ifdef CONFIG_SLAB
	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
#else
	return new ? random_tag() : get_tag(object);
#endif
}

375
376
void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
						const void *object)
377
378
379
380
381
382
383
384
385
{
	struct kasan_alloc_meta *alloc_info;

	if (!(cache->flags & SLAB_KASAN))
		return (void *)object;

	alloc_info = get_alloc_info(cache, object);
	__memset(alloc_info, 0, sizeof(*alloc_info));

386
387
388
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
		object = set_tag(object, assign_tag(cache, object, true));

389
390
391
	return (void *)object;
}

392
393
void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
					gfp_t flags)
394
395
396
397
{
	return kasan_kmalloc(cache, object, cache->object_size, flags);
}

398
399
400
401
402
403
404
405
406
static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
{
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		return shadow_byte < 0 ||
			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
	else
		return tag != (u8)shadow_byte;
}

407
408
409
410
static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
			      unsigned long ip, bool quarantine)
{
	s8 shadow_byte;
411
412
	u8 tag;
	void *tagged_object;
413
414
	unsigned long rounded_up_size;

415
416
417
418
	tag = get_tag(object);
	tagged_object = object;
	object = reset_tag(object);

419
420
	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
	    object)) {
421
		kasan_report_invalid_free(tagged_object, ip);
422
423
424
425
426
427
428
429
		return true;
	}

	/* RCU slabs could be legally used after free within the RCU period */
	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
		return false;

	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
430
431
	if (shadow_invalid(tag, shadow_byte)) {
		kasan_report_invalid_free(tagged_object, ip);
432
433
434
435
436
437
		return true;
	}

	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);

438
439
	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
			unlikely(!(cache->flags & SLAB_KASAN)))
440
441
442
443
		return false;

	set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
	quarantine_put(get_free_info(cache, object), cache);
444
445

	return IS_ENABLED(CONFIG_KASAN_GENERIC);
446
447
448
449
450
451
452
}

bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
{
	return __kasan_slab_free(cache, object, ip, true);
}

453
454
void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
					size_t size, gfp_t flags)
455
456
457
{
	unsigned long redzone_start;
	unsigned long redzone_end;
458
	u8 tag;
459
460
461
462
463
464
465
466
467
468
469
470

	if (gfpflags_allow_blocking(flags))
		quarantine_reduce();

	if (unlikely(object == NULL))
		return NULL;

	redzone_start = round_up((unsigned long)(object + size),
				KASAN_SHADOW_SCALE_SIZE);
	redzone_end = round_up((unsigned long)object + cache->object_size,
				KASAN_SHADOW_SCALE_SIZE);

471
472
473
474
475
	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
		tag = assign_tag(cache, object, false);

	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
	kasan_unpoison_shadow(set_tag(object, tag), size);
476
477
478
479
480
481
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_KMALLOC_REDZONE);

	if (cache->flags & SLAB_KASAN)
		set_track(&get_alloc_info(cache, object)->alloc_track, flags);

482
	return set_tag(object, tag);
483
484
485
}
EXPORT_SYMBOL(kasan_kmalloc);

486
487
void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
						gfp_t flags)
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
{
	struct page *page;
	unsigned long redzone_start;
	unsigned long redzone_end;

	if (gfpflags_allow_blocking(flags))
		quarantine_reduce();

	if (unlikely(ptr == NULL))
		return NULL;

	page = virt_to_page(ptr);
	redzone_start = round_up((unsigned long)(ptr + size),
				KASAN_SHADOW_SCALE_SIZE);
	redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));

	kasan_unpoison_shadow(ptr, size);
	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
		KASAN_PAGE_REDZONE);

	return (void *)ptr;
}

511
void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
{
	struct page *page;

	if (unlikely(object == ZERO_SIZE_PTR))
		return (void *)object;

	page = virt_to_head_page(object);

	if (unlikely(!PageSlab(page)))
		return kasan_kmalloc_large(object, size, flags);
	else
		return kasan_kmalloc(page->slab_cache, object, size, flags);
}

void kasan_poison_kfree(void *ptr, unsigned long ip)
{
	struct page *page;

	page = virt_to_head_page(ptr);

	if (unlikely(!PageSlab(page))) {
533
		if (ptr != page_address(page)) {
534
535
536
537
538
539
540
541
542
543
544
545
			kasan_report_invalid_free(ptr, ip);
			return;
		}
		kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
				KASAN_FREE_PAGE);
	} else {
		__kasan_slab_free(page->slab_cache, ptr, ip, false);
	}
}

void kasan_kfree_large(void *ptr, unsigned long ip)
{
546
	if (ptr != page_address(virt_to_head_page(ptr)))
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
		kasan_report_invalid_free(ptr, ip);
	/* The object will be poisoned by page_alloc. */
}

int kasan_module_alloc(void *addr, size_t size)
{
	void *ret;
	size_t scaled_size;
	size_t shadow_size;
	unsigned long shadow_start;

	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
	shadow_size = round_up(scaled_size, PAGE_SIZE);

	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
		return -EINVAL;

	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
			shadow_start + shadow_size,
567
			GFP_KERNEL,
568
569
570
571
			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
			__builtin_return_address(0));

	if (ret) {
572
		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
		find_vm_area(addr)->flags |= VM_KASAN;
		kmemleak_ignore(ret);
		return 0;
	}

	return -ENOMEM;
}

void kasan_free_shadow(const struct vm_struct *vm)
{
	if (vm->flags & VM_KASAN)
		vfree(kasan_mem_to_shadow(vm->addr));
}

#ifdef CONFIG_MEMORY_HOTPLUG
static bool shadow_mapped(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	if (pgd_none(*pgd))
		return false;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return false;
	pud = pud_offset(p4d, addr);
	if (pud_none(*pud))
		return false;

	/*
	 * We can't use pud_large() or pud_huge(), the first one is
	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
	 * pud_bad(), if pud is bad then it's bad because it's huge.
	 */
	if (pud_bad(*pud))
		return true;
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd))
		return false;

	if (pmd_bad(*pmd))
		return true;
	pte = pte_offset_kernel(pmd, addr);
	return !pte_none(*pte);
}

static int __meminit kasan_mem_notifier(struct notifier_block *nb,
			unsigned long action, void *data)
{
	struct memory_notify *mem_data = data;
	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
	unsigned long shadow_end, shadow_size;

	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
	shadow_size = nr_shadow_pages << PAGE_SHIFT;
	shadow_end = shadow_start + shadow_size;

	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
		return NOTIFY_BAD;

	switch (action) {
	case MEM_GOING_ONLINE: {
		void *ret;

		/*
		 * If shadow is mapped already than it must have been mapped
		 * during the boot. This could happen if we onlining previously
		 * offlined memory.
		 */
		if (shadow_mapped(shadow_start))
			return NOTIFY_OK;

		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
					shadow_end, GFP_KERNEL,
					PAGE_KERNEL, VM_NO_GUARD,
					pfn_to_nid(mem_data->start_pfn),
					__builtin_return_address(0));
		if (!ret)
			return NOTIFY_BAD;

		kmemleak_ignore(ret);
		return NOTIFY_OK;
	}
	case MEM_CANCEL_ONLINE:
	case MEM_OFFLINE: {
		struct vm_struct *vm;

		/*
		 * shadow_start was either mapped during boot by kasan_init()
		 * or during memory online by __vmalloc_node_range().
		 * In the latter case we can use vfree() to free shadow.
		 * Non-NULL result of the find_vm_area() will tell us if
		 * that was the second case.
		 *
		 * Currently it's not possible to free shadow mapped
		 * during boot by kasan_init(). It's because the code
		 * to do that hasn't been written yet. So we'll just
		 * leak the memory.
		 */
		vm = find_vm_area((void *)shadow_start);
		if (vm)
			vfree((void *)shadow_start);
	}
	}

	return NOTIFY_OK;
}

static int __init kasan_memhotplug_init(void)
{
	hotplug_memory_notifier(kasan_mem_notifier, 0);

	return 0;
}

core_initcall(kasan_memhotplug_init);
#endif