slab.c 109 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171
172
173
174
175
176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
195
196
197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198
199
200
201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
202
			 */
Linus Torvalds's avatar
Linus Torvalds committed
203
204
};

Joonsoo Kim's avatar
Joonsoo Kim committed
205
206
207
208
209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
227
228
229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
230
231
232
233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
235
236
};

237
238
239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_AC MAX_NUMNODES
244
#define	SIZE_NODE (2 * MAX_NUMNODES)
245

246
static int drain_freelist(struct kmem_cache *cache,
247
			struct kmem_cache_node *n, int tofree);
248
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249
250
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252
static void cache_reap(struct work_struct *unused);
253

254
255
static int slab_early_init = 1;

256
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
258

259
static void kmem_cache_node_init(struct kmem_cache_node *parent)
260
261
262
263
264
265
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
266
	parent->colour_next = 0;
267
268
269
270
271
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
272
273
274
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
275
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
276
277
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
278
279
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
280
281
282
283
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
284
285
286
287
288

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
289
290
291
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
292
 *
Adrian Bunk's avatar
Adrian Bunk committed
293
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
294
295
 * which could lock up otherwise freeable slabs.
 */
296
297
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
298
299
300
301
302
303

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
304
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
305
306
307
308
309
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
310
311
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
314
315
316
317
318
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
319
320
321
322
323
324
325
326
327
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
328
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
329
330
331
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332
#define	STATS_INC_NODEFREES(x)	do { } while (0)
333
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
334
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
335
336
337
338
339
340
341
342
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
343
344
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
345
 * 0		: objp
346
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
347
348
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
349
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
350
 * 		redzone word.
351
 * cachep->obj_offset: The real object.
352
353
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
354
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
355
 */
356
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
357
{
358
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
359
360
}

361
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
362
363
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364
365
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
366
367
}

368
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
369
370
371
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
372
		return (unsigned long long *)(objp + cachep->size -
373
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
374
					      REDZONE_ALIGN);
375
	return (unsigned long long *) (objp + cachep->size -
376
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
377
378
}

379
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
380
381
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
383
384
385
386
}

#else

387
#define obj_offset(x)			0
388
389
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
390
391
392
393
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

Linus Torvalds's avatar
Linus Torvalds committed
427
/*
428
429
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
430
 */
431
432
433
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
434
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
435

436
437
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
438
	struct page *page = virt_to_head_page(obj);
439
	return page->slab_cache;
440
441
}

442
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443
444
				 unsigned int idx)
{
445
	return page->s_mem + cache->size * idx;
446
447
}

448
/*
449
450
451
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
452
453
454
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455
					const struct page *page, void *obj)
456
{
457
	u32 offset = (obj - page->s_mem);
458
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459
460
}

Linus Torvalds's avatar
Linus Torvalds committed
461
static struct arraycache_init initarray_generic =
462
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
463
464

/* internal cache of cache description objs */
465
static struct kmem_cache kmem_cache_boot = {
466
467
468
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
469
	.size = sizeof(struct kmem_cache),
470
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
471
472
};

473
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
474

475
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
476
477
478
479
{
	return cachep->array[smp_processor_id()];
}

480
481
482
483
484
485
486
487
488
489
490
491
492
493
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

494
495
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
496
{
497
	int nr_objs;
498
	size_t remained_size;
499
	size_t freelist_size;
500
	int extra_space = 0;
501

502
503
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
504
505
506
507
508
509
510
511
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
512
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
513
514
515
516
517

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
518
519
520
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
521
522
523
		nr_objs--;

	return nr_objs;
524
}
Linus Torvalds's avatar
Linus Torvalds committed
525

Andrew Morton's avatar
Andrew Morton committed
526
527
528
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
529
530
531
532
533
534
535
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
536

537
538
539
540
541
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
Joonsoo Kim's avatar
Joonsoo Kim committed
542
	 * - One unsigned int for each object
543
544
545
546
547
548
549
550
551
552
553
554
555
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
556
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
557
					sizeof(freelist_idx_t), align);
558
		mgmt_size = calculate_freelist_size(nr_objs, align);
559
560
561
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
562
563
}

564
#if DEBUG
565
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
566

Andrew Morton's avatar
Andrew Morton committed
567
568
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
569
570
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
571
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
572
	dump_stack();
573
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
574
}
575
#endif
Linus Torvalds's avatar
Linus Torvalds committed
576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

593
594
595
596
597
598
599
600
601
602
603
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

604
605
606
607
608
609
610
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
611
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
612
613
614
615
616

static void init_reap_node(int cpu)
{
	int node;

617
	node = next_node(cpu_to_mem(cpu), node_online_map);
618
	if (node == MAX_NUMNODES)
619
		node = first_node(node_online_map);
620

621
	per_cpu(slab_reap_node, cpu) = node;
622
623
624
625
}

static void next_reap_node(void)
{
626
	int node = __this_cpu_read(slab_reap_node);
627
628
629
630

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
631
	__this_cpu_write(slab_reap_node, node);
632
633
634
635
636
637
638
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
639
640
641
642
643
644
645
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
646
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
647
{
648
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
649
650
651
652
653
654

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
655
	if (keventd_up() && reap_work->work.func == NULL) {
656
		init_reap_node(cpu);
657
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
658
659
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
660
661
662
	}
}

663
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
664
{
665
666
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
667
	 * However, when such objects are allocated or transferred to another
668
669
670
671
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
672
673
674
675
676
677
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
678
	}
679
680
681
682
683
684
685
686
687
688
689
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
690
691
}

692
static inline bool is_slab_pfmemalloc(struct page *page)
693
694
695
696
697
698
699
700
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
701
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
702
	struct page *page;
703
704
705
706
707
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

708
	spin_lock_irqsave(&n->list_lock, flags);
709
710
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
711
712
			goto out;

713
714
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
715
716
			goto out;

717
718
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
719
720
721
722
			goto out;

	pfmemalloc_active = false;
out:
723
	spin_unlock_irqrestore(&n->list_lock, flags);
724
725
}

726
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
727
728
729
730
731
732
733
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
734
		struct kmem_cache_node *n;
735
736
737
738
739
740
741

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
742
		for (i = 0; i < ac->avail; i++) {
743
744
745
746
747
748
749
750
751
752
753
754
755
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
756
		n = get_node(cachep, numa_mem_id());
757
		if (!list_empty(&n->slabs_free) && force_refill) {
758
			struct page *page = virt_to_head_page(objp);
759
			ClearPageSlabPfmemalloc(page);
760
761
762
763
764
765
766
767
768
769
770
771
772
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

773
774
775
776
777
778
779
780
781
782
783
784
785
786
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
787
788
789
790
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
791
		struct page *page = virt_to_head_page(objp);
792
793
794
795
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

796
797
798
799
800
801
802
803
804
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

805
806
807
	ac->entry[ac->avail++] = objp;
}

808
809
810
811
812
813
814
815
816
817
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
818
	int nr = min3(from->avail, max, to->limit - to->avail);
819
820
821
822
823
824
825
826
827
828
829
830

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

831
832
833
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
834
#define reap_alien(cachep, n) do { } while (0)
835

Joonsoo Kim's avatar
Joonsoo Kim committed
836
837
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
838
{
Joonsoo Kim's avatar
Joonsoo Kim committed
839
	return NULL;
840
841
}

Joonsoo Kim's avatar
Joonsoo Kim committed
842
static inline void free_alien_cache(struct alien_cache **ac_ptr)
843
844
845
846
847
848
849
850
851
852
853
854
855
856
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

857
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
858
859
860
861
862
863
864
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

865
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
866
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
867

Joonsoo Kim's avatar
Joonsoo Kim committed
868
869
870
871
872
873
874
875
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
876
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
877
878
879
880
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
881
{
Joonsoo Kim's avatar
Joonsoo Kim committed
882
	struct alien_cache **alc_ptr;
883
	int memsize = sizeof(void *) * nr_node_ids;
884
885
886
887
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
888
889
890
891
892
893
894
895
896
897
898
899
900
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
901
902
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
903
	return alc_ptr;
904
905
}

Joonsoo Kim's avatar
Joonsoo Kim committed
906
static void free_alien_cache(struct alien_cache **alc_ptr)
907
908
909
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
910
	if (!alc_ptr)
911
912
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
913
914
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
915
916
}

917
static void __drain_alien_cache(struct kmem_cache *cachep,
918
919
				struct array_cache *ac, int node,
				struct list_head *list)
920
{
921
	struct kmem_cache_node *n = get_node(cachep, node);
922
923

	if (ac->avail) {
924
		spin_lock(&n->list_lock);
925
926
927
928
929
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
930
931
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
932

933
		free_block(cachep, ac->entry, ac->avail, node, list);
934
		ac->avail = 0;
935
		spin_unlock(&n->list_lock);
936
937
938
	}
}

939
940
941
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
942
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
943
{
944
	int node = __this_cpu_read(slab_reap_node);
945

946
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
947
948
949
950
951
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
952
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
953
954
955
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
956
				spin_unlock_irq(&alc->lock);
957
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
958
			}
959
960
961
962
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
963
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
964
				struct alien_cache **alien)
965
{
966
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
967
	struct alien_cache *alc;
968
969
970
971
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
972
973
		alc = alien[i];
		if (alc) {
974
975
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
976
			ac = &alc->ac;
977
			spin_lock_irqsave(&alc->lock, flags);
978
			__drain_alien_cache(cachep, ac, i, &list);
979
			spin_unlock_irqrestore(&alc->lock, flags);
980
			slabs_destroy(cachep, &list);
981
982
983
		}
	}
}
984

985
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
986
{
987
	int nodeid = page_to_nid(virt_to_page(objp));
988
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
989
990
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
991
	int node;
992
	LIST_HEAD(list);
993

994
	node = numa_mem_id();
995
996
997
998
999

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1000
	if (likely(nodeid == node))
1001
1002
		return 0;

1003
	n = get_node(cachep, node);
1004
	STATS_INC_NODEFREES(cachep);
1005
1006
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
Joonsoo Kim's avatar
Joonsoo Kim committed
1007
		ac = &alien->ac;
1008
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
1009
		if (unlikely(ac->avail == ac->limit)) {
1010
			STATS_INC_ACOVERFLOW(cachep);
1011
			__drain_alien_cache(cachep, ac, nodeid, &list);
1012
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
1013
		ac_put_obj(cachep, ac, objp);
1014
		spin_unlock(&alien->lock);
1015
		slabs_destroy(cachep, &list);
1016
	} else {
1017
1018
		n = get_node(cachep, nodeid);
		spin_lock(&n->list_lock);
1019
		free_block(cachep, &objp, 1, nodeid, &list);
1020
		spin_unlock(&n->list_lock);
1021
		slabs_destroy(cachep, &list);
1022
1023
1024
	}
	return 1;
}
1025
1026
#endif

1027
/*
1028
 * Allocates and initializes node for a node on each slab cache, used for
1029
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1030
 * will be allocated off-node since memory is not yet online for the new node.
1031
 * When hotplugging memory or a cpu, existing node are not replaced if
1032
1033
 * already in use.
 *
1034
 * Must hold slab_mutex.
1035
 */
1036
static int init_cache_node_node(int node)
1037
1038
{
	struct kmem_cache *cachep;
1039
	struct kmem_cache_node *n;
1040
	const int memsize = sizeof(struct kmem_cache_node);
1041

1042
	list_for_each_entry(cachep, &slab_caches, list) {
1043
		/*
1044
		 * Set up the kmem_cache_node for cpu before we can
1045
1046
1047
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1048
1049
		n = get_node(cachep, node);
		if (!n) {
1050
1051
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1052
				return -ENOMEM;
1053
			kmem_cache_node_init(n);
1054
1055
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1056
1057

			/*
1058
1059
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1060
1061
			 * protection here.
			 */
1062
			cachep->node[node] = n;
1063
1064
		}

1065
1066
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1067
1068
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1069
		spin_unlock_irq(&n->list_lock);
1070
1071
1072
1073
	}
	return 0;
}

1074
1075
1076
1077
1078
1079
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1080
static void cpuup_canceled(long cpu)
1081
1082
{
	struct kmem_cache *cachep;
1083
	struct kmem_cache_node *n = NULL;
1084
	int node = cpu_to_mem(cpu);
1085
	const struct cpumask *mask = cpumask_of_node(node);
1086

1087
	list_for_each_entry(cachep, &slab_caches, list) {
1088
1089
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
1090
		struct alien_cache **alien;
1091
		LIST_HEAD(list);
1092
1093
1094
1095

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1096
		n = get_node(cachep, node);
1097

1098
		if (!n)
1099
1100
			goto free_array_cache;

1101
		spin_lock_irq(&n->list_lock);
1102

1103
1104
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1105
		if (nc)
1106
			free_block(cachep, nc->entry, nc->avail, node, &list);
1107

1108
		if (!cpumask_empty(mask)) {
1109
			spin_unlock_irq(&n->list_lock);
1110
1111
1112
			goto free_array_cache;
		}

1113
		shared = n->shared;