slab.c 107 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171
172
173
174
175
176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
195
196
197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198
199
200
201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
202
			 */
Linus Torvalds's avatar
Linus Torvalds committed
203
204
};

Joonsoo Kim's avatar
Joonsoo Kim committed
205
206
207
208
209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
227
228
229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
230
231
232
233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
235
236
};

237
238
239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_NODE (MAX_NUMNODES)
244

245
static int drain_freelist(struct kmem_cache *cache,
246
			struct kmem_cache_node *n, int tofree);
247
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248
249
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251
static void cache_reap(struct work_struct *unused);
252

253
254
static int slab_early_init = 1;

255
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
256

257
static void kmem_cache_node_init(struct kmem_cache_node *parent)
258
259
260
261
262
263
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
264
	parent->colour_next = 0;
265
266
267
268
269
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
270
271
272
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
273
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274
275
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
276
277
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
278
279
280
281
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
282
283
284
285
286

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
287
288
289
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
290
 *
Adrian Bunk's avatar
Adrian Bunk committed
291
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
292
293
 * which could lock up otherwise freeable slabs.
 */
294
295
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
296
297
298
299
300
301

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
302
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
303
304
305
306
307
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
308
309
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
310
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
311
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
312
313
314
315
316
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
317
318
319
320
321
322
323
324
325
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
326
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
327
328
329
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
330
#define	STATS_INC_NODEFREES(x)	do { } while (0)
331
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
332
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
333
334
335
336
337
338
339
340
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
341
342
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
343
 * 0		: objp
344
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
345
346
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
347
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
348
 * 		redzone word.
349
 * cachep->obj_offset: The real object.
350
351
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
352
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
353
 */
354
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
355
{
356
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
357
358
}

359
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
360
361
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362
363
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
364
365
}

366
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
367
368
369
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
370
		return (unsigned long long *)(objp + cachep->size -
371
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
372
					      REDZONE_ALIGN);
373
	return (unsigned long long *) (objp + cachep->size -
374
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
375
376
}

377
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
378
379
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
381
382
383
384
}

#else

385
#define obj_offset(x)			0
386
387
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
388
389
390
391
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

Linus Torvalds's avatar
Linus Torvalds committed
425
/*
426
427
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
428
 */
429
430
431
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
432
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
433

434
435
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
436
	struct page *page = virt_to_head_page(obj);
437
	return page->slab_cache;
438
439
}

440
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441
442
				 unsigned int idx)
{
443
	return page->s_mem + cache->size * idx;
444
445
}

446
/*
447
448
449
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
450
451
452
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453
					const struct page *page, void *obj)
454
{
455
	u32 offset = (obj - page->s_mem);
456
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457
458
}

Linus Torvalds's avatar
Linus Torvalds committed
459
/* internal cache of cache description objs */
460
static struct kmem_cache kmem_cache_boot = {
461
462
463
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
464
	.size = sizeof(struct kmem_cache),
465
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
466
467
};

468
469
#define BAD_ALIEN_MAGIC 0x01020304ul

470
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
471

472
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
473
{
474
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
475
476
}

477
478
479
480
481
482
483
484
485
486
487
488
489
490
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

491
492
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
493
{
494
	int nr_objs;
495
	size_t remained_size;
496
	size_t freelist_size;
497
	int extra_space = 0;
498

499
500
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
501
502
503
504
505
506
507
508
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
509
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511
512
513
514

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
515
516
517
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
518
519
520
		nr_objs--;

	return nr_objs;
521
}
Linus Torvalds's avatar
Linus Torvalds committed
522

Andrew Morton's avatar
Andrew Morton committed
523
524
525
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
526
527
528
529
530
531
532
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
533

534
535
536
537
538
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
Joonsoo Kim's avatar
Joonsoo Kim committed
539
	 * - One unsigned int for each object
540
541
542
543
544
545
546
547
548
549
550
551
552
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
553
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
554
					sizeof(freelist_idx_t), align);
555
		mgmt_size = calculate_freelist_size(nr_objs, align);
556
557
558
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
559
560
}

561
#if DEBUG
562
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
563

Andrew Morton's avatar
Andrew Morton committed
564
565
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
566
567
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
569
	dump_stack();
570
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
571
}
572
#endif
Linus Torvalds's avatar
Linus Torvalds committed
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

590
591
592
593
594
595
596
597
598
599
600
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

601
602
603
604
605
606
607
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
608
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
610
611
612
613

static void init_reap_node(int cpu)
{
	int node;

614
	node = next_node(cpu_to_mem(cpu), node_online_map);
615
	if (node == MAX_NUMNODES)
616
		node = first_node(node_online_map);
617

618
	per_cpu(slab_reap_node, cpu) = node;
619
620
621
622
}

static void next_reap_node(void)
{
623
	int node = __this_cpu_read(slab_reap_node);
624
625
626
627

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
628
	__this_cpu_write(slab_reap_node, node);
629
630
631
632
633
634
635
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
636
637
638
639
640
641
642
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
643
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
644
{
645
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
646
647
648
649
650
651

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
652
	if (keventd_up() && reap_work->work.func == NULL) {
653
		init_reap_node(cpu);
654
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655
656
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
657
658
659
	}
}

660
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
661
{
662
663
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
664
	 * However, when such objects are allocated or transferred to another
665
666
667
668
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
669
670
671
672
673
674
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
675
	}
676
677
678
679
680
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
681
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682
683
684
685
686
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
687
688
}

689
static inline bool is_slab_pfmemalloc(struct page *page)
690
691
692
693
694
695
696
697
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
698
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699
	struct page *page;
700
701
702
703
704
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

705
	spin_lock_irqsave(&n->list_lock, flags);
706
707
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
708
709
			goto out;

710
711
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
712
713
			goto out;

714
715
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
716
717
718
719
			goto out;

	pfmemalloc_active = false;
out:
720
	spin_unlock_irqrestore(&n->list_lock, flags);
721
722
}

723
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724
725
726
727
728
729
730
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
731
		struct kmem_cache_node *n;
732
733
734
735
736
737
738

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
739
		for (i = 0; i < ac->avail; i++) {
740
741
742
743
744
745
746
747
748
749
750
751
752
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
753
		n = get_node(cachep, numa_mem_id());
754
		if (!list_empty(&n->slabs_free) && force_refill) {
755
			struct page *page = virt_to_head_page(objp);
756
			ClearPageSlabPfmemalloc(page);
757
758
759
760
761
762
763
764
765
766
767
768
769
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

770
771
772
773
774
775
776
777
778
779
780
781
782
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

Joonsoo Kim's avatar
Joonsoo Kim committed
783
784
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
785
786
787
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
788
		struct page *page = virt_to_head_page(objp);
789
790
791
792
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

793
794
795
796
797
798
799
800
801
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

802
803
804
	ac->entry[ac->avail++] = objp;
}

805
806
807
808
809
810
811
812
813
814
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
815
	int nr = min3(from->avail, max, to->limit - to->avail);
816
817
818
819
820
821
822
823
824
825
826
827

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

828
829
830
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
831
#define reap_alien(cachep, n) do { } while (0)
832

Joonsoo Kim's avatar
Joonsoo Kim committed
833
834
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
835
{
836
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
837
838
}

Joonsoo Kim's avatar
Joonsoo Kim committed
839
static inline void free_alien_cache(struct alien_cache **ac_ptr)
840
841
842
843
844
845
846
847
848
849
850
851
852
853
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

854
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855
856
857
858
859
860
861
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

862
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
864

Joonsoo Kim's avatar
Joonsoo Kim committed
865
866
867
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
868
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
869
870
871
872
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
873
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
874
875
876
877
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
878
{
Joonsoo Kim's avatar
Joonsoo Kim committed
879
	struct alien_cache **alc_ptr;
880
	size_t memsize = sizeof(void *) * nr_node_ids;
881
882
883
884
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
885
886
887
888
889
890
891
892
893
894
895
896
897
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
898
899
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
900
	return alc_ptr;
901
902
}

Joonsoo Kim's avatar
Joonsoo Kim committed
903
static void free_alien_cache(struct alien_cache **alc_ptr)
904
905
906
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
907
	if (!alc_ptr)
908
909
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
910
911
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
912
913
}

914
static void __drain_alien_cache(struct kmem_cache *cachep,
915
916
				struct array_cache *ac, int node,
				struct list_head *list)
917
{
918
	struct kmem_cache_node *n = get_node(cachep, node);
919
920

	if (ac->avail) {
921
		spin_lock(&n->list_lock);
922
923
924
925
926
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
927
928
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
929

930
		free_block(cachep, ac->entry, ac->avail, node, list);
931
		ac->avail = 0;
932
		spin_unlock(&n->list_lock);
933
934
935
	}
}

936
937
938
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
939
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
940
{
941
	int node = __this_cpu_read(slab_reap_node);
942

943
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
944
945
946
947
948
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
949
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
950
951
952
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
953
				spin_unlock_irq(&alc->lock);
954
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
955
			}
956
957
958
959
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
960
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
961
				struct alien_cache **alien)
962
{
963
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
964
	struct alien_cache *alc;
965
966
967
968
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
969
970
		alc = alien[i];
		if (alc) {
971
972
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
973
			ac = &alc->ac;
974
			spin_lock_irqsave(&alc->lock, flags);
975
			__drain_alien_cache(cachep, ac, i, &list);
976
			spin_unlock_irqrestore(&alc->lock, flags);
977
			slabs_destroy(cachep, &list);
978
979
980
		}
	}
}
981

982
983
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
984
{
985
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
986
987
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
988
	LIST_HEAD(list);
989

990
	n = get_node(cachep, node);
991
	STATS_INC_NODEFREES(cachep);
992
993
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
994
		ac = &alien->ac;
995
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
996
		if (unlikely(ac->avail == ac->limit)) {
997
			STATS_INC_ACOVERFLOW(cachep);
998
			__drain_alien_cache(cachep, ac, page_node, &list);
999
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
1000
		ac_put_obj(cachep, ac, objp);
1001
		spin_unlock(&alien->lock);
1002
		slabs_destroy(cachep, &list);
1003
	} else {
1004
		n = get_node(cachep, page_node);
1005
		spin_lock(&n->list_lock);
1006
		free_block(cachep, &objp, 1, page_node, &list);
1007
		spin_unlock(&n->list_lock);
1008
		slabs_destroy(cachep, &list);
1009
1010
1011
	}
	return 1;
}
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
1026
1027
#endif

1028
/*
1029
 * Allocates and initializes node for a node on each slab cache, used for
1030
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1031
 * will be allocated off-node since memory is not yet online for the new node.
1032
 * When hotplugging memory or a cpu, existing node are not replaced if
1033
1034
 * already in use.
 *
1035
 * Must hold slab_mutex.
1036
 */
1037
static int init_cache_node_node(int node)
1038
1039
{
	struct kmem_cache *cachep;
1040
	struct kmem_cache_node *n;
1041
	const size_t memsize = sizeof(struct kmem_cache_node);
1042

1043
	list_for_each_entry(cachep, &slab_caches, list) {
1044
		/*
1045
		 * Set up the kmem_cache_node for cpu before we can
1046
1047
1048
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1049
1050
		n = get_node(cachep, node);
		if (!n) {
1051
1052
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1053
				return -ENOMEM;
1054
			kmem_cache_node_init(n);
1055
1056
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1057
1058

			/*
1059
1060
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1061
1062
			 * protection here.
			 */
1063
			cachep->node[node] = n;
1064
1065
		}

1066
1067
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1068
1069
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1070
		spin_unlock_irq(&n->list_lock);
1071
1072
1073
1074
	}
	return 0;
}

1075
1076
1077
1078
1079
1080
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1081
static void cpuup_canceled(long cpu)
1082
1083
{
	struct kmem_cache *cachep;
1084
	struct kmem_cache_node *n = NULL;
1085
	int node = cpu_to_mem(cpu);
1086
	const struct cpumask *mask = cpumask_of_node(node);
1087

1088
	list_for_each_entry(cachep, &slab_caches, list) {
1089
1090
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
1091
		struct alien_cache **alien;
1092
		LIST_HEAD(list);
1093

1094
		n = get_node(cachep, node);
1095
		if (!n)
1096
			continue;
1097

1098
		spin_lock_irq(&n->list_lock);
1099

1100
1101
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1102
1103
1104
1105

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1106
			free_block(cachep, nc->entry, nc->avail, node, &list);
1107
1108
			nc->avail = 0;
		}
1109

1110
		if (!cpumask_empty(mask)) {
1111
			spin_unlock_irq(&n->list_lock);
1112
			goto free_slab;
Akinobu Mita's avatar