slab.c 121 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
 */

#include	<linux/slab.h>
90
#include	"slab.h"
Linus Torvalds's avatar
Linus Torvalds committed
91
#include	<linux/mm.h>
92
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
93
94
95
96
97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
99
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
100
101
102
103
104
105
106
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
117
#include	<linux/kmemcheck.h>
118
#include	<linux/memory.h>
119
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
120
121
122
123
124

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

125
126
#include <trace/events/kmem.h>

127
128
#include	"internal.h"

Linus Torvalds's avatar
Linus Torvalds committed
129
/*
130
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
151
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
152
153
154
155
156

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

157
158
159
160
161
162
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
163
164
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
165
# define CREATE_MASK	(SLAB_RED_ZONE | \
Linus Torvalds's avatar
Linus Torvalds committed
166
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
167
			 SLAB_CACHE_DMA | \
168
			 SLAB_STORE_USER | \
Linus Torvalds's avatar
Linus Torvalds committed
169
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
170
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
171
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
172
#else
173
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
174
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
175
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
Pekka Enberg's avatar
Pekka Enberg committed
177
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
Linus Torvalds's avatar
Linus Torvalds committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

199
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
200
201
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
202
203
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
220
	struct rcu_head head;
221
	struct kmem_cache *cachep;
222
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
223
224
};

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

Linus Torvalds's avatar
Linus Torvalds committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
263
	spinlock_t lock;
264
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
265
266
267
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
268
269
270
271
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
272
			 */
Linus Torvalds's avatar
Linus Torvalds committed
273
274
};

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
292
293
294
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
295
296
297
298
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
299
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
300
301
302
};

/*
303
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
304
305
 */
struct kmem_list3 {
306
307
308
309
310
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
311
	unsigned int colour_next;	/* Per-node cache coloring */
312
313
314
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
315
316
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
317
318
};

319
320
321
/*
 * Need this for bootstrapping a per node allocator.
 */
322
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
323
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
324
#define	CACHE_CACHE 0
325
326
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
327

328
329
330
331
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
332
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
333
static void cache_reap(struct work_struct *unused);
334

335
/*
Andrew Morton's avatar
Andrew Morton committed
336
337
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
338
 */
339
static __always_inline int index_of(const size_t size)
340
{
341
342
	extern void __bad_size(void);

343
344
345
346
347
348
349
350
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
351
#include <linux/kmalloc_sizes.h>
352
#undef CACHE
353
		__bad_size();
354
	} else
355
		__bad_size();
356
357
358
	return 0;
}

359
360
static int slab_early_init = 1;

361
362
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
363

Pekka Enberg's avatar
Pekka Enberg committed
364
static void kmem_list3_init(struct kmem_list3 *parent)
365
366
367
368
369
370
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
371
	parent->colour_next = 0;
372
373
374
375
376
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
377
378
379
380
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
381
382
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
383
384
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
385
386
387
388
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
389
390
391
392
393

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
394
395
396
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
397
 *
Adrian Bunk's avatar
Adrian Bunk committed
398
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
399
400
401
402
403
404
405
406
407
408
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
409
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
410
411
412
413
414
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
415
416
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
417
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
418
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
419
420
421
422
423
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
424
425
426
427
428
429
430
431
432
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
433
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
434
435
436
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
437
#define	STATS_INC_NODEFREES(x)	do { } while (0)
438
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
439
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
440
441
442
443
444
445
446
447
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
448
449
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
450
 * 0		: objp
451
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
452
453
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
454
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
455
 * 		redzone word.
456
 * cachep->obj_offset: The real object.
457
458
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
459
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
460
 */
461
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
462
{
463
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
464
465
}

466
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
467
468
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469
470
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
471
472
}

473
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
474
475
476
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
477
		return (unsigned long long *)(objp + cachep->size -
478
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
479
					      REDZONE_ALIGN);
480
	return (unsigned long long *) (objp + cachep->size -
481
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
482
483
}

484
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
485
486
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
487
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
488
489
490
491
}

#else

492
#define obj_offset(x)			0
493
494
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
495
496
497
498
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

499
#ifdef CONFIG_TRACING
500
501
size_t slab_buffer_size(struct kmem_cache *cachep)
{
502
	return cachep->size;
503
504
505
506
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

Linus Torvalds's avatar
Linus Torvalds committed
507
/*
508
509
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
510
 */
511
512
513
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
514
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
515

516
517
static inline struct kmem_cache *page_get_cache(struct page *page)
{
518
	page = compound_head(page);
519
	BUG_ON(!PageSlab(page));
520
	return page->slab_cache;
521
522
}

523
524
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
525
	struct page *page = virt_to_head_page(obj);
526
	return page->slab_cache;
527
528
529
530
}

static inline struct slab *virt_to_slab(const void *obj)
{
531
	struct page *page = virt_to_head_page(obj);
532
533
534

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
535
536
}

537
538
539
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
540
	return slab->s_mem + cache->size * idx;
541
542
}

543
/*
544
545
546
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
547
548
549
550
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
551
{
552
553
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
554
555
}

Andrew Morton's avatar
Andrew Morton committed
556
557
558
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
576
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
577
578
579
580
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
581
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
582
static struct arraycache_init initarray_generic =
583
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
584
585

/* internal cache of cache description objs */
586
static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
587
static struct kmem_cache cache_cache = {
588
	.nodelists = cache_cache_nodelists,
589
590
591
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
592
	.size = sizeof(struct kmem_cache),
593
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
594
595
};

596
597
#define BAD_ALIEN_MAGIC 0x01020304ul

598
599
600
601
602
603
604
605
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
606
607
608
609
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
610
 */
611
612
613
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

659
static void init_node_lock_keys(int q)
660
{
661
662
	struct cache_sizes *s = malloc_sizes;

663
	if (slab_state < UP)
664
665
666
667
668
669
670
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
671
			continue;
672
673
674

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
675
676
	}
}
677
678
679
680
681
682
683
684

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
685
#else
686
687
688
689
static void init_node_lock_keys(int q)
{
}

690
static inline void init_lock_keys(void)
691
692
{
}
693
694
695
696
697
698
699
700

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
701
702
#endif

703
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
704

705
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
706
707
708
709
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
710
711
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
712
713
714
715
716
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
717
718
719
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
720
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
721
#endif
722
723
724
	if (!size)
		return ZERO_SIZE_PTR;

Linus Torvalds's avatar
Linus Torvalds committed
725
726
727
728
	while (size > csizep->cs_size)
		csizep++;

	/*
729
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
730
731
732
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
733
#ifdef CONFIG_ZONE_DMA
Linus Torvalds's avatar
Linus Torvalds committed
734
735
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
736
#endif
Linus Torvalds's avatar
Linus Torvalds committed
737
738
739
	return csizep->cs_cachep;
}

740
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
741
742
743
744
{
	return __find_general_cachep(size, gfpflags);
}

745
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
746
{
747
748
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
749

Andrew Morton's avatar
Andrew Morton committed
750
751
752
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
753
754
755
756
757
758
759
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
760

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
809
810
}

811
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
812

Andrew Morton's avatar
Andrew Morton committed
813
814
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
815
816
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
817
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
818
819
820
	dump_stack();
}

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

837
838
839
840
841
842
843
844
845
846
847
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

848
849
850
851
852
853
854
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
855
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
856
857
858
859
860

static void init_reap_node(int cpu)
{
	int node;

861
	node = next_node(cpu_to_mem(cpu), node_online_map);
862
	if (node == MAX_NUMNODES)
863
		node = first_node(node_online_map);
864

865
	per_cpu(slab_reap_node, cpu) = node;
866
867
868
869
}

static void next_reap_node(void)
{
870
	int node = __this_cpu_read(slab_reap_node);
871
872
873
874

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
875
	__this_cpu_write(slab_reap_node, node);
876
877
878
879
880
881
882
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
883
884
885
886
887
888
889
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
890
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
891
{
892
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
893
894
895
896
897
898

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
899
	if (keventd_up() && reap_work->work.func == NULL) {
900
		init_reap_node(cpu);
901
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
902
903
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
904
905
906
	}
}

907
static struct array_cache *alloc_arraycache(int node, int entries,
908
					    int batchcount, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
909
{
910
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
911
912
	struct array_cache *nc = NULL;

913
	nc = kmalloc_node(memsize, gfp, node);
914
915
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
916
	 * However, when such objects are allocated or transferred to another
917
918
919
920
921
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
Linus Torvalds's avatar
Linus Torvalds committed
922
923
924
925
926
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
927
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
928
929
930
931
	}
	return nc;
}

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

static void *ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
		for (i = 1; i < ac->avail; i++) {
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
			ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

static void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
		struct page *page = virt_to_page(objp);
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

	ac->entry[ac->avail++] = objp;
}

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1038
	int nr = min3(from->avail, max, to->limit - to->avail);
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1051
1052
1053
1054
1055
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1056
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1076
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1077
1078
1079
1080
1081
1082
1083
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1084
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1085
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1086

1087
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1088
1089
{
	struct array_cache **ac_ptr;
1090
	int memsize = sizeof(void *) * nr_node_ids;
1091
1092
1093
1094
	int i;

	if (limit > 1)
		limit = 12;
1095
	ac_ptr = kzalloc_node(memsize, gfp, node);
1096
1097
	if (ac_ptr) {
		for_each_node(i) {
1098
			if (i == node || !node_online(i))
1099
				continue;
1100
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1101
			if (!ac_ptr[i]) {
1102
				for (i--; i >= 0; i--)
1103
1104
1105
1106
1107
1108
1109
1110
1111
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
1112
static void free_alien_cache(struct array_cache **ac_ptr)
1113
1114
1115
1116
1117
1118
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
1119
	    kfree(ac_ptr[i]);
1120
1121
1122
	kfree(ac_ptr);
}

1123
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1124
				struct array_cache *ac, int node)
1125
1126
1127
1128
1129
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1130
1131
1132
1133
1134
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1135
1136
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1137

1138
		free_block(cachep, ac->entry, ac->avail, node);
1139
1140
1141
1142
1143
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1144
1145
1146
1147
1148
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1149
	int node = __this_cpu_read(slab_reap_node);
1150
1151
1152

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1153
1154

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1155
1156
1157
1158
1159
1160
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1161
1162
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1163
{
1164
	int i = 0;
1165
1166
1167
1168
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1169
		ac = alien[i];
1170
1171
1172
1173
1174
1175
1176
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1177

1178
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1179
1180
1181
1182
1183
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
1184
1185
	int node;

1186
	node = numa_mem_id();
1187
1188
1189
1190
1191

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1192
	if (likely(slabp->nodeid == node))
1193
1194
		return 0;

1195
	l3 = cachep->nodelists[node];
1196
1197
1198
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1199
		spin_lock(&alien->lock);
1200
1201
1202
1203
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1204
		ac_put_obj(cachep, alien, objp);
1205
1206
1207
1208
1209
1210
1211
1212
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1213
1214
#endif

1215
1216
1217
1218
1219
1220
1221
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1222
 * Must hold slab_mutex.
1223
1224
1225
1226
1227
1228
1229
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1230
	list_for_each_entry(cachep, &slab_caches, list) {
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1246
			 * go.  slab_mutex is sufficient
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1261
1262
1263
1264
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1265
	int node = cpu_to_mem(cpu);
1266
	const struct cpumask *mask = cpumask_of_node(node);
1267

1268
	list_for_each_entry(cachep, &slab_caches, list) {
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1288
		if (!cpumask_empty(mask)) {
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1318
	list_for_each_entry(cachep, &slab_caches, list) {
1319
1320
1321
1322
1323
1324
1325
1326
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1327
{
1328
	struct kmem_cache *cachep;
1329
	struct kmem_list3 *l3 = NULL;
1330
	int node = cpu_to_mem(cpu);
1331
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1332

1333
1334
1335
1336
1337
1338
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1339
1340
1341
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1342
1343
1344
1345
1346

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1347
	list_for_each_entry(cachep, &slab_caches, list) {