slab.c 113 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171
172
173
174
175
176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	spinlock_t lock;
195
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
196
197
198
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
199
200
201
202
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
203
			 */
Linus Torvalds's avatar
Linus Torvalds committed
204
205
};

Joonsoo Kim's avatar
Joonsoo Kim committed
206
207
208
209
210
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
228
229
230
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
231
232
233
234
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
235
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
236
237
};

238
239
240
/*
 * Need this for bootstrapping a per node allocator.
 */
241
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
242
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
243
#define	CACHE_CACHE 0
244
#define	SIZE_AC MAX_NUMNODES
245
#define	SIZE_NODE (2 * MAX_NUMNODES)
246

247
static int drain_freelist(struct kmem_cache *cache,
248
			struct kmem_cache_node *n, int tofree);
249
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
250
251
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
252
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
253
static void cache_reap(struct work_struct *unused);
254

255
256
static int slab_early_init = 1;

257
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
258
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
259

260
static void kmem_cache_node_init(struct kmem_cache_node *parent)
261
262
263
264
265
266
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
267
	parent->colour_next = 0;
268
269
270
271
272
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
273
274
275
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
276
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
277
278
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
279
280
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
281
282
283
284
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
285
286
287
288
289

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
290
291
292
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
293
 *
Adrian Bunk's avatar
Adrian Bunk committed
294
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
295
296
 * which could lock up otherwise freeable slabs.
 */
297
298
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
299
300
301
302
303
304

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
305
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
306
307
308
309
310
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
311
312
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
313
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
314
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
315
316
317
318
319
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
320
321
322
323
324
325
326
327
328
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
329
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
330
331
332
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
333
#define	STATS_INC_NODEFREES(x)	do { } while (0)
334
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
335
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
336
337
338
339
340
341
342
343
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
344
345
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
346
 * 0		: objp
347
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
348
349
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
350
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
351
 * 		redzone word.
352
 * cachep->obj_offset: The real object.
353
354
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
355
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
356
 */
357
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
358
{
359
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
360
361
}

362
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
363
364
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
365
366
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
367
368
}

369
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
370
371
372
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
373
		return (unsigned long long *)(objp + cachep->size -
374
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
375
					      REDZONE_ALIGN);
376
	return (unsigned long long *) (objp + cachep->size -
377
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
378
379
}

380
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
381
382
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
383
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
384
385
386
387
}

#else

388
#define obj_offset(x)			0
389
390
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
391
392
393
394
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

Linus Torvalds's avatar
Linus Torvalds committed
428
/*
429
430
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
431
 */
432
433
434
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
435
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
436

437
438
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
439
	struct page *page = virt_to_head_page(obj);
440
	return page->slab_cache;
441
442
}

443
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
444
445
				 unsigned int idx)
{
446
	return page->s_mem + cache->size * idx;
447
448
}

449
/*
450
451
452
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
453
454
455
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
456
					const struct page *page, void *obj)
457
{
458
	u32 offset = (obj - page->s_mem);
459
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
460
461
}

Linus Torvalds's avatar
Linus Torvalds committed
462
static struct arraycache_init initarray_generic =
463
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
464
465

/* internal cache of cache description objs */
466
static struct kmem_cache kmem_cache_boot = {
467
468
469
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
470
	.size = sizeof(struct kmem_cache),
471
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
472
473
};

474
475
#define BAD_ALIEN_MAGIC 0x01020304ul

476
477
478
479
480
481
482
483
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
484
485
486
487
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
488
 */
489
490
491
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

492
493
494
495
496
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
497
		struct kmem_cache_node *n)
498
{
Joonsoo Kim's avatar
Joonsoo Kim committed
499
	struct alien_cache **alc;
500
501
	int r;

502
503
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
504
505
506
507
508
509
510
511
512
513
514
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
Joonsoo Kim's avatar
Joonsoo Kim committed
515
			lockdep_set_class(&(alc[r]->ac.lock), alc_key);
516
517
518
	}
}

519
520
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
521
{
522
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, n);
523
524
525
526
527
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;
528
	struct kmem_cache_node *n;
529

530
531
	for_each_kmem_cache_node(cachep, node, n)
		slab_set_debugobj_lock_classes_node(cachep, n);
532
533
}

534
static void init_node_lock_keys(int q)
535
{
536
	int i;
537

538
	if (slab_state < UP)
539
540
		return;

Christoph Lameter's avatar
Christoph Lameter committed
541
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
542
		struct kmem_cache_node *n;
543
544
545
546
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
547

548
		n = get_node(cache, q);
549
		if (!n || OFF_SLAB(cache))
550
			continue;
551

552
		slab_set_lock_classes(cache, &on_slab_l3_key,
553
				&on_slab_alc_key, n);
554
555
	}
}
556

557
558
static void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
559
560
{
	slab_set_lock_classes(cachep, &on_slab_l3_key,
561
			&on_slab_alc_key, n);
562
563
564
565
566
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;
567
	struct kmem_cache_node *n;
568
569

	VM_BUG_ON(OFF_SLAB(cachep));
570
571
	for_each_kmem_cache_node(cachep, node, n)
		on_slab_lock_classes_node(cachep, n);
572
573
}

574
static inline void __init init_lock_keys(void)
575
576
577
578
579
580
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
581
#else
582
static void __init init_node_lock_keys(int q)
583
584
585
{
}

586
static inline void init_lock_keys(void)
587
588
{
}
589

590
591
592
593
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

594
595
static inline void on_slab_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
596
597
598
{
}

599
600
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep,
	struct kmem_cache_node *n)
601
602
603
604
605
606
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
607
608
#endif

609
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
610

611
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
612
613
614
615
{
	return cachep->array[smp_processor_id()];
}

616
617
618
619
620
621
622
623
624
625
626
627
628
629
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

630
631
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
632
{
633
	int nr_objs;
634
	size_t remained_size;
635
	size_t freelist_size;
636
	int extra_space = 0;
637

638
639
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
640
641
642
643
644
645
646
647
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
648
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
649
650
651
652
653

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
654
655
656
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
657
658
659
		nr_objs--;

	return nr_objs;
660
}
Linus Torvalds's avatar
Linus Torvalds committed
661

Andrew Morton's avatar
Andrew Morton committed
662
663
664
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
665
666
667
668
669
670
671
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
672

673
674
675
676
677
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
Joonsoo Kim's avatar
Joonsoo Kim committed
678
	 * - One unsigned int for each object
679
680
681
682
683
684
685
686
687
688
689
690
691
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
692
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
693
					sizeof(freelist_idx_t), align);
694
		mgmt_size = calculate_freelist_size(nr_objs, align);
695
696
697
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
698
699
}

700
#if DEBUG
701
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
702

Andrew Morton's avatar
Andrew Morton committed
703
704
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
705
706
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
707
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
708
	dump_stack();
709
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
710
}
711
#endif
Linus Torvalds's avatar
Linus Torvalds committed
712

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

729
730
731
732
733
734
735
736
737
738
739
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

740
741
742
743
744
745
746
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
747
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
748
749
750
751
752

static void init_reap_node(int cpu)
{
	int node;

753
	node = next_node(cpu_to_mem(cpu), node_online_map);
754
	if (node == MAX_NUMNODES)
755
		node = first_node(node_online_map);
756

757
	per_cpu(slab_reap_node, cpu) = node;
758
759
760
761
}

static void next_reap_node(void)
{
762
	int node = __this_cpu_read(slab_reap_node);
763
764
765
766

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
767
	__this_cpu_write(slab_reap_node, node);
768
769
770
771
772
773
774
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
775
776
777
778
779
780
781
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
782
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
783
{
784
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
785
786
787
788
789
790

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
791
	if (keventd_up() && reap_work->work.func == NULL) {
792
		init_reap_node(cpu);
793
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
794
795
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
796
797
798
	}
}

799
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
800
{
801
802
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
803
	 * However, when such objects are allocated or transferred to another
804
805
806
807
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
808
809
810
811
812
813
814
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
		spin_lock_init(&ac->lock);
Linus Torvalds's avatar
Linus Torvalds committed
815
	}
816
817
818
819
820
821
822
823
824
825
826
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
827
828
}

829
static inline bool is_slab_pfmemalloc(struct page *page)
830
831
832
833
834
835
836
837
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
838
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
839
	struct page *page;
840
841
842
843
844
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

845
	spin_lock_irqsave(&n->list_lock, flags);
846
847
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
848
849
			goto out;

850
851
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
852
853
			goto out;

854
855
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
856
857
858
859
			goto out;

	pfmemalloc_active = false;
out:
860
	spin_unlock_irqrestore(&n->list_lock, flags);
861
862
}

863
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
864
865
866
867
868
869
870
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
871
		struct kmem_cache_node *n;
872
873
874
875
876
877
878

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
879
		for (i = 0; i < ac->avail; i++) {
880
881
882
883
884
885
886
887
888
889
890
891
892
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
893
		n = get_node(cachep, numa_mem_id());
894
		if (!list_empty(&n->slabs_free) && force_refill) {
895
			struct page *page = virt_to_head_page(objp);
896
			ClearPageSlabPfmemalloc(page);
897
898
899
900
901
902
903
904
905
906
907
908
909
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

910
911
912
913
914
915
916
917
918
919
920
921
922
923
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
924
925
926
927
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
928
		struct page *page = virt_to_head_page(objp);
929
930
931
932
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

933
934
935
936
937
938
939
940
941
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

942
943
944
	ac->entry[ac->avail++] = objp;
}

945
946
947
948
949
950
951
952
953
954
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
955
	int nr = min3(from->avail, max, to->limit - to->avail);
956
957
958
959
960
961
962
963
964
965
966
967

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

968
969
970
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
971
#define reap_alien(cachep, n) do { } while (0)
972

Joonsoo Kim's avatar
Joonsoo Kim committed
973
974
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
975
{
Joonsoo Kim's avatar
Joonsoo Kim committed
976
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
977
978
}

Joonsoo Kim's avatar
Joonsoo Kim committed
979
static inline void free_alien_cache(struct alien_cache **ac_ptr)
980
981
982
983
984
985
986
987
988
989
990
991
992
993
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

994
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
995
996
997
998
999
1000
1001
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1002
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1003
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1004

Joonsoo Kim's avatar
Joonsoo Kim committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
	int memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1017
{
Joonsoo Kim's avatar
Joonsoo Kim committed
1018
	struct alien_cache **alc_ptr;
1019
	int memsize = sizeof(void *) * nr_node_ids;
1020
1021
1022
1023
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
1037
1038
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
1039
	return alc_ptr;
1040
1041
}

Joonsoo Kim's avatar
Joonsoo Kim committed
1042
static void free_alien_cache(struct alien_cache **alc_ptr)
1043
1044
1045
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
1046
	if (!alc_ptr)
1047
1048
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
1049
1050
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
1051
1052
}

1053
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1054
				struct array_cache *ac, int node)
1055
{
1056
	struct kmem_cache_node *n = get_node(cachep, node);
1057
	LIST_HEAD(list);
1058
1059

	if (ac->avail) {
1060
		spin_lock(&n->list_lock);
1061
1062
1063
1064
1065
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1066
1067
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1068

1069
		free_block(cachep, ac->entry, ac->avail, node, &list);
1070
		ac->avail = 0;
1071
		spin_unlock(&n->list_lock);
1072
		slabs_destroy(cachep, &list);
1073
1074
1075
	}
}

1076
1077
1078
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1079
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1080
{
1081
	int node = __this_cpu_read(slab_reap_node);
1082

1083
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
			if (ac->avail && spin_trylock_irq(&ac->lock)) {
				__drain_alien_cache(cachep, ac, node);
				spin_unlock_irq(&ac->lock);
			}
1093
1094
1095
1096
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1097
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
1098
				struct alien_cache **alien)
1099
{
1100
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
1101
	struct alien_cache *alc;
1102
1103
1104
1105
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
1106
1107
1108
		alc = alien[i];
		if (alc) {
			ac = &alc->ac;
1109
1110
1111
1112
1113
1114
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1115

1116
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1117
{
1118
	int nodeid = page_to_nid(virt_to_page(objp));
1119
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
1120
1121
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
1122
	int node;
1123
	LIST_HEAD(list);
1124

1125
	node = numa_mem_id();
1126
1127
1128
1129
1130

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1131
	if (likely(nodeid == node))
1132
1133
		return 0;

1134
	n = get_node(cachep, node);
1135
	STATS_INC_NODEFREES(cachep);
1136
1137
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
Joonsoo Kim's avatar
Joonsoo Kim committed
1138
1139
1140
		ac = &alien->ac;
		spin_lock(&ac->lock);
		if (unlikely(ac->avail == ac->limit)) {
1141
			STATS_INC_ACOVERFLOW(cachep);
Joonsoo Kim's avatar
Joonsoo Kim committed
1142
			__drain_alien_cache(cachep, ac, nodeid);
1143
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
1144
1145
		ac_put_obj(cachep, ac, objp);
		spin_unlock(&ac->lock);
1146
	} else {
1147
1148
		n = get_node(cachep, nodeid);
		spin_lock(&n->list_lock);
1149
		free_block(cachep, &objp, 1, nodeid, &list);
1150
		spin_unlock(&n->list_lock);
1151
		slabs_destroy(cachep, &list);
1152
1153
1154
	}
	return 1;
}
1155
1156
#endif

1157
/*
Christoph Lameter's avatar