slab.c 109 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171
172
173
174
175
176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

Linus Torvalds's avatar
Linus Torvalds committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
195
196
197
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
198
199
200
201
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
Andrew Morton's avatar
Andrew Morton committed
202
			 */
Linus Torvalds's avatar
Linus Torvalds committed
203
204
};

Joonsoo Kim's avatar
Joonsoo Kim committed
205
206
207
208
209
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

Andrew Morton's avatar
Andrew Morton committed
227
228
229
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
230
231
232
233
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
234
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
235
236
};

237
238
239
/*
 * Need this for bootstrapping a per node allocator.
 */
240
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242
#define	CACHE_CACHE 0
243
#define	SIZE_AC MAX_NUMNODES
244
#define	SIZE_NODE (2 * MAX_NUMNODES)
245

246
static int drain_freelist(struct kmem_cache *cache,
247
			struct kmem_cache_node *n, int tofree);
248
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249
250
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252
static void cache_reap(struct work_struct *unused);
253

254
255
static int slab_early_init = 1;

256
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
258

259
static void kmem_cache_node_init(struct kmem_cache_node *parent)
260
261
262
263
264
265
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
266
	parent->colour_next = 0;
267
268
269
270
271
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
272
273
274
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
275
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
276
277
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
278
279
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
280
281
282
283
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
284
285
286
287
288

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
289
290
291
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
292
 *
Adrian Bunk's avatar
Adrian Bunk committed
293
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
294
295
 * which could lock up otherwise freeable slabs.
 */
296
297
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
298
299
300
301
302
303

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
304
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
305
306
307
308
309
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
310
311
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
312
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
313
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
314
315
316
317
318
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
319
320
321
322
323
324
325
326
327
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
328
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
329
330
331
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
332
#define	STATS_INC_NODEFREES(x)	do { } while (0)
333
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
334
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
335
336
337
338
339
340
341
342
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
343
344
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
345
 * 0		: objp
346
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
347
348
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
349
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
350
 * 		redzone word.
351
 * cachep->obj_offset: The real object.
352
353
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
354
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
355
 */
356
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
357
{
358
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
359
360
}

361
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
362
363
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364
365
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
366
367
}

368
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
369
370
371
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
372
		return (unsigned long long *)(objp + cachep->size -
373
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
374
					      REDZONE_ALIGN);
375
	return (unsigned long long *) (objp + cachep->size -
376
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
377
378
}

379
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
380
381
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
383
384
385
386
}

#else

387
#define obj_offset(x)			0
388
389
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
390
391
392
393
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#define OBJECT_FREE (0)
#define OBJECT_ACTIVE (1)

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void set_obj_status(struct page *page, int idx, int val)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;
	status[idx] = val;
}

static inline unsigned int get_obj_status(struct page *page, int idx)
{
	int freelist_size;
	char *status;
	struct kmem_cache *cachep = page->slab_cache;

	freelist_size = cachep->num * sizeof(freelist_idx_t);
	status = (char *)page->freelist + freelist_size;

	return status[idx];
}

#else
static inline void set_obj_status(struct page *page, int idx, int val) {}

#endif

Linus Torvalds's avatar
Linus Torvalds committed
427
/*
428
429
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
430
 */
431
432
433
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
434
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
435

436
437
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
438
	struct page *page = virt_to_head_page(obj);
439
	return page->slab_cache;
440
441
}

442
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
443
444
				 unsigned int idx)
{
445
	return page->s_mem + cache->size * idx;
446
447
}

448
/*
449
450
451
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
452
453
454
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455
					const struct page *page, void *obj)
456
{
457
	u32 offset = (obj - page->s_mem);
458
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459
460
}

Linus Torvalds's avatar
Linus Torvalds committed
461
static struct arraycache_init initarray_generic =
462
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
463
464

/* internal cache of cache description objs */
465
static struct kmem_cache kmem_cache_boot = {
466
467
468
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
469
	.size = sizeof(struct kmem_cache),
470
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
471
472
};

473
474
#define BAD_ALIEN_MAGIC 0x01020304ul

475
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
476

477
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
478
479
480
481
{
	return cachep->array[smp_processor_id()];
}

482
483
484
485
486
487
488
489
490
491
492
493
494
495
static size_t calculate_freelist_size(int nr_objs, size_t align)
{
	size_t freelist_size;

	freelist_size = nr_objs * sizeof(freelist_idx_t);
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		freelist_size += nr_objs * sizeof(char);

	if (align)
		freelist_size = ALIGN(freelist_size, align);

	return freelist_size;
}

496
497
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
498
{
499
	int nr_objs;
500
	size_t remained_size;
501
	size_t freelist_size;
502
	int extra_space = 0;
503

504
505
	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
		extra_space = sizeof(char);
506
507
508
509
510
511
512
513
	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
514
	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
515
516
517
518
519

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
520
521
522
	remained_size = slab_size - nr_objs * buffer_size;
	freelist_size = calculate_freelist_size(nr_objs, align);
	if (remained_size < freelist_size)
523
524
525
		nr_objs--;

	return nr_objs;
526
}
Linus Torvalds's avatar
Linus Torvalds committed
527

Andrew Morton's avatar
Andrew Morton committed
528
529
530
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
531
532
533
534
535
536
537
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
538

539
540
541
542
543
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
Joonsoo Kim's avatar
Joonsoo Kim committed
544
	 * - One unsigned int for each object
545
546
547
548
549
550
551
552
553
554
555
556
557
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
558
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
559
					sizeof(freelist_idx_t), align);
560
		mgmt_size = calculate_freelist_size(nr_objs, align);
561
562
563
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
564
565
}

566
#if DEBUG
567
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
568

Andrew Morton's avatar
Andrew Morton committed
569
570
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
571
572
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
573
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
574
	dump_stack();
575
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
576
}
577
#endif
Linus Torvalds's avatar
Linus Torvalds committed
578

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

595
596
597
598
599
600
601
602
603
604
605
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

606
607
608
609
610
611
612
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
613
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
614
615
616
617
618

static void init_reap_node(int cpu)
{
	int node;

619
	node = next_node(cpu_to_mem(cpu), node_online_map);
620
	if (node == MAX_NUMNODES)
621
		node = first_node(node_online_map);
622

623
	per_cpu(slab_reap_node, cpu) = node;
624
625
626
627
}

static void next_reap_node(void)
{
628
	int node = __this_cpu_read(slab_reap_node);
629
630
631
632

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
633
	__this_cpu_write(slab_reap_node, node);
634
635
636
637
638
639
640
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
641
642
643
644
645
646
647
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
648
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
649
{
650
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
651
652
653
654
655
656

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
657
	if (keventd_up() && reap_work->work.func == NULL) {
658
		init_reap_node(cpu);
659
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
660
661
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
662
663
664
	}
}

665
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
666
{
667
668
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
669
	 * However, when such objects are allocated or transferred to another
670
671
672
673
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
674
675
676
677
678
679
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
680
	}
681
682
683
684
685
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
686
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
687
688
689
690
691
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
692
693
}

694
static inline bool is_slab_pfmemalloc(struct page *page)
695
696
697
698
699
700
701
702
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
703
	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
704
	struct page *page;
705
706
707
708
709
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

710
	spin_lock_irqsave(&n->list_lock, flags);
711
712
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
713
714
			goto out;

715
716
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
717
718
			goto out;

719
720
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
721
722
723
724
			goto out;

	pfmemalloc_active = false;
out:
725
	spin_unlock_irqrestore(&n->list_lock, flags);
726
727
}

728
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
729
730
731
732
733
734
735
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
736
		struct kmem_cache_node *n;
737
738
739
740
741
742
743

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
744
		for (i = 0; i < ac->avail; i++) {
745
746
747
748
749
750
751
752
753
754
755
756
757
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
758
		n = get_node(cachep, numa_mem_id());
759
		if (!list_empty(&n->slabs_free) && force_refill) {
760
			struct page *page = virt_to_head_page(objp);
761
			ClearPageSlabPfmemalloc(page);
762
763
764
765
766
767
768
769
770
771
772
773
774
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

775
776
777
778
779
780
781
782
783
784
785
786
787
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

Joonsoo Kim's avatar
Joonsoo Kim committed
788
789
static noinline void *__ac_put_obj(struct kmem_cache *cachep,
			struct array_cache *ac, void *objp)
790
791
792
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
793
		struct page *page = virt_to_head_page(objp);
794
795
796
797
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

798
799
800
801
802
803
804
805
806
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

807
808
809
	ac->entry[ac->avail++] = objp;
}

810
811
812
813
814
815
816
817
818
819
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
820
	int nr = min3(from->avail, max, to->limit - to->avail);
821
822
823
824
825
826
827
828
829
830
831
832

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

833
834
835
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
836
#define reap_alien(cachep, n) do { } while (0)
837

Joonsoo Kim's avatar
Joonsoo Kim committed
838
839
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
840
{
841
	return (struct alien_cache **)BAD_ALIEN_MAGIC;
842
843
}

Joonsoo Kim's avatar
Joonsoo Kim committed
844
static inline void free_alien_cache(struct alien_cache **ac_ptr)
845
846
847
848
849
850
851
852
853
854
855
856
857
858
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

859
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
860
861
862
863
864
865
866
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

867
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
869

Joonsoo Kim's avatar
Joonsoo Kim committed
870
871
872
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
873
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
874
875
876
877
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
878
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
879
880
881
882
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
883
{
Joonsoo Kim's avatar
Joonsoo Kim committed
884
	struct alien_cache **alc_ptr;
885
	size_t memsize = sizeof(void *) * nr_node_ids;
886
887
888
889
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
890
891
892
893
894
895
896
897
898
899
900
901
902
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
903
904
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
905
	return alc_ptr;
906
907
}

Joonsoo Kim's avatar
Joonsoo Kim committed
908
static void free_alien_cache(struct alien_cache **alc_ptr)
909
910
911
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
912
	if (!alc_ptr)
913
914
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
915
916
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
917
918
}

919
static void __drain_alien_cache(struct kmem_cache *cachep,
920
921
				struct array_cache *ac, int node,
				struct list_head *list)
922
{
923
	struct kmem_cache_node *n = get_node(cachep, node);
924
925

	if (ac->avail) {
926
		spin_lock(&n->list_lock);
927
928
929
930
931
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
932
933
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
934

935
		free_block(cachep, ac->entry, ac->avail, node, list);
936
		ac->avail = 0;
937
		spin_unlock(&n->list_lock);
938
939
940
	}
}

941
942
943
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
944
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
945
{
946
	int node = __this_cpu_read(slab_reap_node);
947

948
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
949
950
951
952
953
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
954
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
955
956
957
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
958
				spin_unlock_irq(&alc->lock);
959
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
960
			}
961
962
963
964
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
965
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
966
				struct alien_cache **alien)
967
{
968
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
969
	struct alien_cache *alc;
970
971
972
973
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
974
975
		alc = alien[i];
		if (alc) {
976
977
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
978
			ac = &alc->ac;
979
			spin_lock_irqsave(&alc->lock, flags);
980
			__drain_alien_cache(cachep, ac, i, &list);
981
			spin_unlock_irqrestore(&alc->lock, flags);
982
			slabs_destroy(cachep, &list);
983
984
985
		}
	}
}
986

987
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988
{
989
	int nodeid = page_to_nid(virt_to_page(objp));
990
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
991
992
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
993
	int node;
994
	LIST_HEAD(list);
995

996
	node = numa_mem_id();
997
998
999
1000
1001

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1002
	if (likely(nodeid == node))
1003
1004
		return 0;

1005
	n = get_node(cachep, node);
1006
	STATS_INC_NODEFREES(cachep);
1007
1008
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
Joonsoo Kim's avatar
Joonsoo Kim committed
1009
		ac = &alien->ac;
1010
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
1011
		if (unlikely(ac->avail == ac->limit)) {
1012
			STATS_INC_ACOVERFLOW(cachep);
1013
			__drain_alien_cache(cachep, ac, nodeid, &list);
1014
		}
Joonsoo Kim's avatar
Joonsoo Kim committed
1015
		ac_put_obj(cachep, ac, objp);
1016
		spin_unlock(&alien->lock);
1017
		slabs_destroy(cachep, &list);
1018
	} else {
1019
1020
		n = get_node(cachep, nodeid);
		spin_lock(&n->list_lock);
1021
		free_block(cachep, &objp, 1, nodeid, &list);
1022
		spin_unlock(&n->list_lock);
1023
		slabs_destroy(cachep, &list);
1024
1025
1026
	}
	return 1;
}
1027
1028
#endif

1029
/*
1030
 * Allocates and initializes node for a node on each slab cache, used for
1031
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1032
 * will be allocated off-node since memory is not yet online for the new node.
1033
 * When hotplugging memory or a cpu, existing node are not replaced if
1034
1035
 * already in use.
 *
1036
 * Must hold slab_mutex.
1037
 */
1038
static int init_cache_node_node(int node)
1039
1040
{
	struct kmem_cache *cachep;
1041
	struct kmem_cache_node *n;
1042
	const size_t memsize = sizeof(struct kmem_cache_node);
1043

1044
	list_for_each_entry(cachep, &slab_caches, list) {
1045
		/*
1046
		 * Set up the kmem_cache_node for cpu before we can
1047
1048
1049
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1050
1051
		n = get_node(cachep, node);
		if (!n) {
1052
1053
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1054
				return -ENOMEM;
1055
			kmem_cache_node_init(n);
1056
1057
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1058
1059

			/*
1060
1061
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1062
1063
			 * protection here.
			 */
1064
			cachep->node[node] = n;
1065
1066
		}

1067
1068
		spin_lock_irq(&n->list_lock);
		n->free_limit =
1069
1070
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1071
		spin_unlock_irq(&n->list_lock);
1072
1073
1074
1075
	}
	return 0;
}

1076
1077
1078
1079
1080
1081
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1082
static void cpuup_canceled(long cpu)
1083
1084
{
	struct kmem_cache *cachep;
1085
	struct kmem_cache_node *n = NULL;
1086
	int node = cpu_to_mem(cpu);
1087
	const struct cpumask *mask = cpumask_of_node(node);
1088

1089
	list_for_each_entry(cachep, &slab_caches, list) {
1090
1091
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
1092
		struct alien_cache **alien;
1093
		LIST_HEAD(list);
1094
1095
1096
1097

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1098
		n = get_node(cachep, node);
1099

1100
		if (!n)
1101
1102
			goto free_array_cache;

1103
		spin_lock_irq(&n->list_lock);
1104

1105
1106
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1107
		if (nc)
1108
			free_block(cachep, nc->entry, nc->avail, node, &list);