slab.c 115 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
Ingo Molnar's avatar
Ingo Molnar committed
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
Linus Torvalds's avatar
Linus Torvalds committed
98
99
100
101
102
103
104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
113
#include	<linux/debugobjects.h>
Linus Torvalds's avatar
Linus Torvalds committed
114
115
116
117
118
119

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
120
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
141
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
142
143
144
145
146
147
148

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149
150
151
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
Linus Torvalds's avatar
Linus Torvalds committed
152
 */
153
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
Linus Torvalds's avatar
Linus Torvalds committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
173
# define CREATE_MASK	(SLAB_RED_ZONE | \
Linus Torvalds's avatar
Linus Torvalds committed
174
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175
			 SLAB_CACHE_DMA | \
176
			 SLAB_STORE_USER | \
Linus Torvalds's avatar
Linus Torvalds committed
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
			 SLAB_DEBUG_OBJECTS)
Linus Torvalds's avatar
Linus Torvalds committed
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
182
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
183
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
			 SLAB_DEBUG_OBJECTS)
Linus Torvalds's avatar
Linus Torvalds committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
208
209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210
211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
212
213
214
215
216
217
218
219
220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
221
222
223
224
225
226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
Linus Torvalds's avatar
Linus Torvalds committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
248
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
269
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
270
271
272
273
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
Linus Torvalds's avatar
Linus Torvalds committed
274
275
};

Andrew Morton's avatar
Andrew Morton committed
276
277
278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
279
280
281
282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
284
285
286
};

/*
287
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
288
289
 */
struct kmem_list3 {
290
291
292
293
294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
296
297
298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299
300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
301
302
};

303
304
305
/*
 * Need this for bootstrapping a per node allocator.
 */
306
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
307
308
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
309
310
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
311

312
313
314
315
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
316
static int enable_cpucache(struct kmem_cache *cachep);
317
static void cache_reap(struct work_struct *unused);
318

319
/*
Andrew Morton's avatar
Andrew Morton committed
320
321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325
326
	extern void __bad_size(void);

327
328
329
330
331
332
333
334
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
335
#include <linux/kmalloc_sizes.h>
336
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340
341
342
	return 0;
}

343
344
static int slab_early_init = 1;

345
346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
347

Pekka Enberg's avatar
Pekka Enberg committed
348
static void kmem_list3_init(struct kmem_list3 *parent)
349
350
351
352
353
354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356
357
358
359
360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
361
362
363
364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365
366
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
367
368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369
370
371
372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
373
374

/*
375
 * struct kmem_cache
Linus Torvalds's avatar
Linus Torvalds committed
376
377
378
 *
 * manages a cache.
 */
379

380
struct kmem_cache {
Linus Torvalds's avatar
Linus Torvalds committed
381
/* 1) per-cpu data, touched during every alloc/free */
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
384
385
386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
	u32 reciprocal_buffer_size;
390
391
/* 3) touched by every alloc & free from the backend */

Andrew Morton's avatar
Andrew Morton committed
392
393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
Linus Torvalds's avatar
Linus Torvalds committed
394

395
/* 4) cache_grow/shrink */
Linus Torvalds's avatar
Linus Torvalds committed
396
	/* order of pgs per slab (2^n) */
397
	unsigned int gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
398
399

	/* force GFP flags, e.g. GFP_DMA */
400
	gfp_t gfpflags;
Linus Torvalds's avatar
Linus Torvalds committed
401

Andrew Morton's avatar
Andrew Morton committed
402
	size_t colour;			/* cache colouring range */
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
405
	unsigned int slab_size;
Andrew Morton's avatar
Andrew Morton committed
406
	unsigned int dflags;		/* dynamic flags */
Linus Torvalds's avatar
Linus Torvalds committed
407
408

	/* constructor func */
409
	void (*ctor)(void *obj);
Linus Torvalds's avatar
Linus Torvalds committed
410

411
/* 5) cache creation/removal */
412
413
	const char *name;
	struct list_head next;
Linus Torvalds's avatar
Linus Torvalds committed
414

415
/* 6) statistics */
Linus Torvalds's avatar
Linus Torvalds committed
416
#if STATS
417
418
419
420
421
422
423
424
425
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
426
	unsigned long node_overflow;
427
428
429
430
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
Linus Torvalds's avatar
Linus Torvalds committed
431
432
#endif
#if DEBUG
433
434
435
436
437
438
439
440
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
441
#endif
Eric Dumazet's avatar
Eric Dumazet committed
442
443
444
445
446
447
448
449
450
451
452
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
Linus Torvalds's avatar
Linus Torvalds committed
453
454
455
456
457
458
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
459
460
461
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
462
 *
Adrian Bunk's avatar
Adrian Bunk committed
463
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
464
465
466
467
468
469
470
471
472
473
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
474
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
475
476
477
478
479
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
480
481
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
482
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
483
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
484
485
486
487
488
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
489
490
491
492
493
494
495
496
497
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
498
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
499
500
501
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
502
#define	STATS_INC_NODEFREES(x)	do { } while (0)
503
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
504
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
505
506
507
508
509
510
511
512
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
513
514
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
515
 * 0		: objp
516
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
517
518
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
519
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
520
 * 		redzone word.
521
522
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Morton's avatar
Andrew Morton committed
523
524
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
525
 */
526
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
527
{
528
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
529
530
}

531
static int obj_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
532
{
533
	return cachep->obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
534
535
}

536
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
537
538
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539
540
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
541
542
}

543
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
544
545
546
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
547
548
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
549
					      REDZONE_ALIGN);
550
551
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
552
553
}

554
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
555
556
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
557
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
558
559
560
561
}

#else

562
563
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
564
565
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
566
567
568
569
570
571
572
573
574
575
576
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

Andrew Morton's avatar
Andrew Morton committed
577
578
579
580
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
Linus Torvalds's avatar
Linus Torvalds committed
581
 */
582
583
584
585
586
587
588
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
589
	page = compound_head(page);
590
	BUG_ON(!PageSlab(page));
591
592
593
594
595
596
597
598
599
600
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
601
	BUG_ON(!PageSlab(page));
602
603
	return (struct slab *)page->lru.prev;
}
Linus Torvalds's avatar
Linus Torvalds committed
604

605
606
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
607
	struct page *page = virt_to_head_page(obj);
608
609
610
611
612
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
613
	struct page *page = virt_to_head_page(obj);
614
615
616
	return page_get_slab(page);
}

617
618
619
620
621
622
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

623
624
625
626
627
628
629
630
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
631
{
632
633
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
634
635
}

Andrew Morton's avatar
Andrew Morton committed
636
637
638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
656
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
657
658
659
660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
662
static struct arraycache_init initarray_generic =
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
664
665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
667
668
669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
671
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
672
673
};

674
675
#define BAD_ALIEN_MAGIC 0x01020304ul

676
677
678
679
680
681
682
683
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
684
685
686
687
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
688
 */
689
690
691
692
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
693
694
695

{
	int q;
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
723
724
725
	}
}
#else
726
static inline void init_lock_keys(void)
727
728
729
730
{
}
#endif

731
/*
732
 * Guard access to the cache-chain.
733
 */
Ingo Molnar's avatar
Ingo Molnar committed
734
static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
735
736
737
738
739
740
741
742
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
743
744
	PARTIAL_AC,
	PARTIAL_L3,
Linus Torvalds's avatar
Linus Torvalds committed
745
746
747
	FULL
} g_cpucache_up;

748
749
750
751
752
753
754
755
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

756
static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
757

758
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
759
760
761
762
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
763
764
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
765
766
767
768
769
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
770
771
772
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
773
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
774
#endif
775
776
777
	if (!size)
		return ZERO_SIZE_PTR;

Linus Torvalds's avatar
Linus Torvalds committed
778
779
780
781
	while (size > csizep->cs_size)
		csizep++;

	/*
782
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
783
784
785
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
786
#ifdef CONFIG_ZONE_DMA
Linus Torvalds's avatar
Linus Torvalds committed
787
788
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
789
#endif
Linus Torvalds's avatar
Linus Torvalds committed
790
791
792
	return csizep->cs_cachep;
}

793
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
794
795
796
797
{
	return __find_general_cachep(size, gfpflags);
}

798
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
799
{
800
801
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
802

Andrew Morton's avatar
Andrew Morton committed
803
804
805
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
806
807
808
809
810
811
812
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
813

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
862
863
}

864
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
865

Andrew Morton's avatar
Andrew Morton committed
866
867
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
868
869
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
870
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
871
872
873
	dump_stack();
}

874
875
876
877
878
879
880
881
882
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
883
static int numa_platform __read_mostly = 1;
884
885
886
887
888
889
890
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
906
		node = first_node(node_online_map);
907

908
	per_cpu(reap_node, cpu) = node;
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
926
927
928
929
930
931
932
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
933
static void __cpuinit start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
934
{
935
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
936
937
938
939
940
941

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
942
	if (keventd_up() && reap_work->work.func == NULL) {
943
		init_reap_node(cpu);
944
		INIT_DELAYED_WORK(reap_work, cache_reap);
945
946
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
947
948
949
	}
}

950
static struct array_cache *alloc_arraycache(int node, int entries,
951
					    int batchcount)
Linus Torvalds's avatar
Linus Torvalds committed
952
{
953
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
954
955
	struct array_cache *nc = NULL;

956
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds's avatar
Linus Torvalds committed
957
958
959
960
961
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
962
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
963
964
965
966
	}
	return nc;
}

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1016
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1017
1018
1019
1020
1021
1022
1023
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1024
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1025
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1026

Pekka Enberg's avatar
Pekka Enberg committed
1027
static struct array_cache **alloc_alien_cache(int node, int limit)
1028
1029
{
	struct array_cache **ac_ptr;
1030
	int memsize = sizeof(void *) * nr_node_ids;
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
1044
				for (i--; i >= 0; i--)
1045
1046
1047
1048
1049
1050
1051
1052
1053
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
1054
static void free_alien_cache(struct array_cache **ac_ptr)
1055
1056
1057
1058
1059
1060
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
1061
	    kfree(ac_ptr[i]);
1062
1063
1064
	kfree(ac_ptr);
}

1065
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
1066
				struct array_cache *ac, int node)
1067
1068
1069
1070
1071
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1072
1073
1074
1075
1076
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1077
1078
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1079

1080
		free_block(cachep, ac->entry, ac->avail, node);
1081
1082
1083
1084
1085
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1086
1087
1088
1089
1090
1091
1092
1093
1094
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1095
1096

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1097
1098
1099
1100
1101
1102
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1103
1104
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1105
{
1106
	int i = 0;
1107
1108
1109
1110
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1111
		ac = alien[i];
1112
1113
1114
1115
1116
1117
1118
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1119

1120
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1121
1122
1123
1124
1125
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
1126
1127
1128
	int node;

	node = numa_node_id();
1129
1130
1131
1132
1133

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1134
	if (likely(slabp->nodeid == node))
1135
1136
		return 0;

1137
	l3 = cachep->nodelists[node];
1138
1139
1140
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1141
		spin_lock(&alien->lock);
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1155
1156
#endif

1157
1158
1159
1160
1161
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1162
	node_to_cpumask_ptr(mask, node);
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1184
		if (!cpus_empty(*mask)) {
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1223
{
1224
	struct kmem_cache *cachep;
1225
1226
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1227
	const int memsize = sizeof(struct kmem_list3);
Linus Torvalds's avatar
Linus Torvalds committed
1228

1229
1230
1231
1232
1233
1234
1235
1236
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
Andrew Morton's avatar
Andrew Morton committed
1237
		/*
1238
1239
1240
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1241
		 */
1242
1243
1244
1245
1246
1247
1248
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1249

Andrew Morton's avatar
Andrew Morton committed
1250
			/*
1251
1252
1253
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1254
			 */
1255
			cachep->nodelists[node] = l3;
1256
1257
		}

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
					cachep->batchcount);
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
				0xbaadf00d);
1282
1283
			if (!shared) {
				kfree(nc);
Linus Torvalds's avatar
Linus Torvalds committed
1284
				goto bad;
1285
			}
1286
1287
1288
		}
		if (use_alien_caches) {
			alien = alloc_alien_cache(node, cachep->limit);
1289
1290
1291
			if (!alien) {
				kfree(shared);
				kfree(nc);
1292
				goto bad;
1293
			}
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1308
#ifdef CONFIG_NUMA
1309
1310
1311
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
1312
		}
1313
1314
1315
1316
1317
1318
1319
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1320
	cpuup_canceled(cpu);
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1333
		mutex_lock(&cache_chain_mutex);
1334
		err = cpuup_prepare(cpu);
1335
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1336
1337
		break;
	case CPU_ONLINE:
1338
	case CPU_ONLINE_FROZEN:
Linus Torvalds's avatar
Linus Torvalds committed
1339
1340
1341
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1342
  	case CPU_DOWN_PREPARE:
1343
  	case CPU_DOWN_PREPARE_FROZEN:
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1355
  	case CPU_DOWN_FAILED_FROZEN:
1356
1357
		start_cpu_timer(cpu);
  		break;
Linus Torvalds's avatar
Linus Torvalds committed
1358
	case CPU_DEAD: