slab.c 107 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
Ingo Molnar's avatar
Ingo Molnar committed
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
91
92
93
94
95
96
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
Linus Torvalds's avatar
Linus Torvalds committed
98
99
100
101
102
103
104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
108
#include	<linux/mutex.h>
Linus Torvalds's avatar
Linus Torvalds committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174
			 SLAB_CACHE_DMA | \
Linus Torvalds's avatar
Linus Torvalds committed
175
176
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds's avatar
Linus Torvalds committed
178
#else
179
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
Linus Torvalds's avatar
Linus Torvalds committed
180
181
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds's avatar
Linus Torvalds committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

204
typedef unsigned int kmem_bufctl_t;
Linus Torvalds's avatar
Linus Torvalds committed
205
206
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207
208
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
Linus Torvalds's avatar
Linus Torvalds committed
209
210
211
212
213
214
215
216
217

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
218
219
220
221
222
223
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
Linus Torvalds's avatar
Linus Torvalds committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
243
	struct rcu_head head;
244
	struct kmem_cache *cachep;
245
	void *addr;
Linus Torvalds's avatar
Linus Torvalds committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
Andrew Morton's avatar
Andrew Morton committed
266
267
268
269
270
271
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
Linus Torvalds's avatar
Linus Torvalds committed
272
273
};

Andrew Morton's avatar
Andrew Morton committed
274
275
276
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
Linus Torvalds's avatar
Linus Torvalds committed
277
278
279
280
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
281
	void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds's avatar
Linus Torvalds committed
282
283
284
};

/*
285
 * The slab lists for all objects.
Linus Torvalds's avatar
Linus Torvalds committed
286
287
 */
struct kmem_list3 {
288
289
290
291
292
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
293
	unsigned int colour_next;	/* Per-node cache coloring */
294
295
296
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
297
298
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
Linus Torvalds's avatar
Linus Torvalds committed
299
300
};

301
302
303
304
305
306
307
308
309
310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
Andrew Morton's avatar
Andrew Morton committed
311
312
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
313
 */
314
static __always_inline int index_of(const size_t size)
315
{
316
317
	extern void __bad_size(void);

318
319
320
321
322
323
324
325
326
327
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
328
		__bad_size();
329
	} else
330
		__bad_size();
331
332
333
	return 0;
}

334
335
static int slab_early_init = 1;

336
337
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
Linus Torvalds's avatar
Linus Torvalds committed
338

Pekka Enberg's avatar
Pekka Enberg committed
339
static void kmem_list3_init(struct kmem_list3 *parent)
340
341
342
343
344
345
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
346
	parent->colour_next = 0;
347
348
349
350
351
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
352
353
354
355
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
356
357
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
358
359
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
360
361
362
363
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
364
365

/*
366
 * struct kmem_cache
Linus Torvalds's avatar
Linus Torvalds committed
367
368
369
 *
 * manages a cache.
 */
370

371
struct kmem_cache {
Linus Torvalds's avatar
Linus Torvalds committed
372
/* 1) per-cpu data, touched during every alloc/free */
373
	struct array_cache *array[NR_CPUS];
374
/* 2) Cache tunables. Protected by cache_chain_mutex */
375
376
377
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
378

379
	unsigned int buffer_size;
380
/* 3) touched by every alloc & free from the backend */
381
	struct kmem_list3 *nodelists[MAX_NUMNODES];
382

Andrew Morton's avatar
Andrew Morton committed
383
384
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
Linus Torvalds's avatar
Linus Torvalds committed
385

386
/* 4) cache_grow/shrink */
Linus Torvalds's avatar
Linus Torvalds committed
387
	/* order of pgs per slab (2^n) */
388
	unsigned int gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
389
390

	/* force GFP flags, e.g. GFP_DMA */
391
	gfp_t gfpflags;
Linus Torvalds's avatar
Linus Torvalds committed
392

Andrew Morton's avatar
Andrew Morton committed
393
	size_t colour;			/* cache colouring range */
394
	unsigned int colour_off;	/* colour offset */
395
	struct kmem_cache *slabp_cache;
396
	unsigned int slab_size;
Andrew Morton's avatar
Andrew Morton committed
397
	unsigned int dflags;		/* dynamic flags */
Linus Torvalds's avatar
Linus Torvalds committed
398
399

	/* constructor func */
400
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
401
402

	/* de-constructor func */
403
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
404

405
/* 5) cache creation/removal */
406
407
	const char *name;
	struct list_head next;
Linus Torvalds's avatar
Linus Torvalds committed
408

409
/* 6) statistics */
Linus Torvalds's avatar
Linus Torvalds committed
410
#if STATS
411
412
413
414
415
416
417
418
419
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
420
	unsigned long node_overflow;
421
422
423
424
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
Linus Torvalds's avatar
Linus Torvalds committed
425
426
#endif
#if DEBUG
427
428
429
430
431
432
433
434
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
435
436
437
438
439
440
441
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
442
443
444
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
445
 *
Adrian Bunk's avatar
Adrian Bunk committed
446
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
447
448
449
450
451
452
453
454
455
456
457
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
Andrew Morton's avatar
Andrew Morton committed
458
459
460
461
462
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
463
464
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
465
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
466
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
467
468
469
470
471
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
472
473
474
475
476
477
478
479
480
481
482
483
484
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
485
#define	STATS_INC_NODEFREES(x)	do { } while (0)
486
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
487
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
488
489
490
491
492
493
494
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
Andrew Morton's avatar
Andrew Morton committed
495
496
/*
 * Magic nums for obj red zoning.
Linus Torvalds's avatar
Linus Torvalds committed
497
498
499
500
501
502
503
504
505
506
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

Andrew Morton's avatar
Andrew Morton committed
507
508
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
509
 * 0		: objp
510
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
511
512
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
513
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
514
 * 		redzone word.
515
516
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Morton's avatar
Andrew Morton committed
517
518
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
519
 */
520
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
521
{
522
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
523
524
}

525
static int obj_size(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
526
{
527
	return cachep->obj_size;
Linus Torvalds's avatar
Linus Torvalds committed
528
529
}

530
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
531
532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
534
535
}

536
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
537
538
539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
540
		return (unsigned long *)(objp + cachep->buffer_size -
541
					 2 * BYTES_PER_WORD);
542
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
543
544
}

545
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
546
547
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
549
550
551
552
}

#else

553
554
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
Linus Torvalds's avatar
Linus Torvalds committed
555
556
557
558
559
560
561
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
Andrew Morton's avatar
Andrew Morton committed
562
563
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
Linus Torvalds's avatar
Linus Torvalds committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

Andrew Morton's avatar
Andrew Morton committed
583
584
585
586
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
Linus Torvalds's avatar
Linus Torvalds committed
587
 */
588
589
590
591
592
593
594
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
595
596
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
597
	BUG_ON(!PageSlab(page));
598
599
600
601
602
603
604
605
606
607
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
608
609
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
610
	BUG_ON(!PageSlab(page));
611
612
	return (struct slab *)page->lru.prev;
}
Linus Torvalds's avatar
Linus Torvalds committed
613

614
615
616
617
618
619
620
621
622
623
624
625
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

626
627
628
629
630
631
632
633
634
635
636
637
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

Andrew Morton's avatar
Andrew Morton committed
638
639
640
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
Linus Torvalds's avatar
Linus Torvalds committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
658
	{NULL,}
Linus Torvalds's avatar
Linus Torvalds committed
659
660
661
662
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
664
static struct arraycache_init initarray_generic =
665
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds's avatar
Linus Torvalds committed
666
667

/* internal cache of cache description objs */
668
static struct kmem_cache cache_cache = {
669
670
671
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
672
	.buffer_size = sizeof(struct kmem_cache),
673
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
674
#if DEBUG
675
	.obj_size = sizeof(struct kmem_cache),
Linus Torvalds's avatar
Linus Torvalds committed
676
677
678
679
#endif
};

/* Guard access to the cache-chain. */
Ingo Molnar's avatar
Ingo Molnar committed
680
static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
681
682
683
static struct list_head cache_chain;

/*
Andrew Morton's avatar
Andrew Morton committed
684
685
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
Linus Torvalds's avatar
Linus Torvalds committed
686
687
688
689
690
691
692
693
694
695
696
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
697
698
	PARTIAL_AC,
	PARTIAL_L3,
Linus Torvalds's avatar
Linus Torvalds committed
699
700
701
	FULL
} g_cpucache_up;

702
703
704
705
706
707
708
709
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

Linus Torvalds's avatar
Linus Torvalds committed
710
711
static DEFINE_PER_CPU(struct work_struct, reap_work);

Andrew Morton's avatar
Andrew Morton committed
712
713
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
714
static void enable_cpucache(struct kmem_cache *cachep);
715
static void cache_reap(void *unused);
716
static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds's avatar
Linus Torvalds committed
717

718
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
719
720
721
722
{
	return cachep->array[smp_processor_id()];
}

Andrew Morton's avatar
Andrew Morton committed
723
724
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
Linus Torvalds's avatar
Linus Torvalds committed
725
726
727
728
729
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
730
731
732
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
733
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds's avatar
Linus Torvalds committed
734
735
736
737
738
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
739
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds's avatar
Linus Torvalds committed
740
741
742
743
744
745
746
747
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

748
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
749
750
751
752
753
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

754
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds's avatar
Linus Torvalds committed
755
{
756
757
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
Linus Torvalds's avatar
Linus Torvalds committed
758

Andrew Morton's avatar
Andrew Morton committed
759
760
761
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
762
763
764
765
766
767
768
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
769

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds's avatar
Linus Torvalds committed
818
819
820
821
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

Andrew Morton's avatar
Andrew Morton committed
822
823
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
824
825
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
826
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
827
828
829
	dump_stack();
}

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
845
		node = first_node(node_online_map);
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
888
		init_reap_node(cpu);
Linus Torvalds's avatar
Linus Torvalds committed
889
890
891
892
893
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

894
static struct array_cache *alloc_arraycache(int node, int entries,
895
					    int batchcount)
Linus Torvalds's avatar
Linus Torvalds committed
896
{
897
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds's avatar
Linus Torvalds committed
898
899
	struct array_cache *nc = NULL;

900
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds's avatar
Linus Torvalds committed
901
902
903
904
905
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
906
		spin_lock_init(&nc->lock);
Linus Torvalds's avatar
Linus Torvalds committed
907
908
909
910
	}
	return nc;
}

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

935
#ifdef CONFIG_NUMA
936
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
937
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
938

Pekka Enberg's avatar
Pekka Enberg committed
939
static struct array_cache **alloc_alien_cache(int node, int limit)
940
941
{
	struct array_cache **ac_ptr;
942
	int memsize = sizeof(void *) * MAX_NUMNODES;
943
944
945
946
947
948
949
950
951
952
953
954
955
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
956
				for (i--; i <= 0; i--)
957
958
959
960
961
962
963
964
965
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

Pekka Enberg's avatar
Pekka Enberg committed
966
static void free_alien_cache(struct array_cache **ac_ptr)
967
968
969
970
971
972
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
973
	    kfree(ac_ptr[i]);
974
975
976
	kfree(ac_ptr);
}

977
static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg's avatar
Pekka Enberg committed
978
				struct array_cache *ac, int node)
979
980
981
982
983
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
984
985
986
987
988
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
989
990
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
991

992
		free_block(cachep, ac->entry, ac->avail, node);
993
994
995
996
997
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

998
999
1000
1001
1002
1003
1004
1005
1006
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1007
1008

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1009
1010
1011
1012
1013
1014
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
1015
1016
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1017
{
1018
	int i = 0;
1019
1020
1021
1022
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1023
		ac = alien[i];
1024
1025
1026
1027
1028
1029
1030
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
		spin_lock(&alien->lock);
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1065
#else
1066

1067
#define drain_alien_cache(cachep, alien) do { } while (0)
1068
#define reap_alien(cachep, l3) do { } while (0)
1069

1070
1071
1072
1073
1074
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1075
1076
1077
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1078

1079
1080
1081
1082
1083
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

1084
1085
#endif

1086
static int cpuup_callback(struct notifier_block *nfb,
1087
				    unsigned long action, void *hcpu)
Linus Torvalds's avatar
Linus Torvalds committed
1088
1089
{
	long cpu = (long)hcpu;
1090
	struct kmem_cache *cachep;
1091
1092
1093
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
Linus Torvalds's avatar
Linus Torvalds committed
1094
1095
1096

	switch (action) {
	case CPU_UP_PREPARE:
Ingo Molnar's avatar
Ingo Molnar committed
1097
		mutex_lock(&cache_chain_mutex);
Andrew Morton's avatar
Andrew Morton committed
1098
1099
		/*
		 * We need to do this right in the beginning since
1100
1101
1102
1103
1104
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

Linus Torvalds's avatar
Linus Torvalds committed
1105
		list_for_each_entry(cachep, &cache_chain, next) {
Andrew Morton's avatar
Andrew Morton committed
1106
1107
			/*
			 * Set up the size64 kmemlist for cpu before we can
1108
1109
1110
1111
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
Andrew Morton's avatar
Andrew Morton committed
1112
1113
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1114
1115
1116
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1117
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1118

1119
1120
1121
1122
1123
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1124
1125
				cachep->nodelists[node] = l3;
			}
Linus Torvalds's avatar
Linus Torvalds committed
1126

1127
1128
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
Andrew Morton's avatar
Andrew Morton committed
1129
1130
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1131
1132
1133
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

Andrew Morton's avatar
Andrew Morton committed
1134
1135
1136
1137
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1138
		list_for_each_entry(cachep, &cache_chain, next) {
1139
			struct array_cache *nc;
1140
1141
			struct array_cache *shared;
			struct array_cache **alien;
1142

1143
			nc = alloc_arraycache(node, cachep->limit,
1144
						cachep->batchcount);
Linus Torvalds's avatar
Linus Torvalds committed
1145
1146
			if (!nc)
				goto bad;
1147
1148
1149
1150
1151
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1152

1153
1154
1155
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
Linus Torvalds's avatar
Linus Torvalds committed
1156
			cachep->array[cpu] = nc;
1157
1158
1159
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1160
1161
1162
1163
1164
1165
1166
1167
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1168
			}
1169
1170
1171
1172
1173
1174
1175
1176
1177
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
Linus Torvalds's avatar
Linus Torvalds committed
1178
		}
Ingo Molnar's avatar
Ingo Molnar committed
1179
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1180
1181
1182
1183
1184
1185
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1186
1187
1188
1189
1190
1191
1192
1193
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
Linus Torvalds's avatar
Linus Torvalds committed
1194
1195
		/* fall thru */
	case CPU_UP_CANCELED:
Ingo Molnar's avatar
Ingo Molnar committed
1196
		mutex_lock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1197
1198
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1199
1200
			struct array_cache *shared;
			struct array_cache **alien;
1201
			cpumask_t mask;
Linus Torvalds's avatar
Linus Torvalds committed
1202

1203
			mask = node_to_cpumask(node);
Linus Torvalds's avatar
Linus Torvalds committed
1204
1205
1206
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1207
1208
1209
			l3 = cachep->nodelists[node];

			if (!l3)
1210
				goto free_array_cache;
1211

1212
			spin_lock_irq(&l3->list_lock);
1213
1214
1215
1216

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1217
				free_block(cachep, nc->entry, nc->avail, node);
1218
1219

			if (!cpus_empty(mask)) {
1220
				spin_unlock_irq(&l3->list_lock);
1221
				goto free_array_cache;
1222
			}
1223

1224
1225
			shared = l3->shared;
			if (shared) {
1226
				free_block(cachep, l3->shared->entry,
1227
					   l3->shared->avail, node);
1228
1229
1230
				l3->shared = NULL;
			}

1231
1232
1233
1234
1235
1236
1237
1238
1239
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1240
			}
1241
free_array_cache:
Linus Torvalds's avatar
Linus Torvalds committed
1242
1243
			kfree(nc);
		}
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
Ingo Molnar's avatar
Ingo Molnar committed
1258
		mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1259
1260
1261
1262
		break;
#endif
	}
	return NOTIFY_OK;
Andrew Morton's avatar
Andrew Morton committed
1263
bad:
Ingo Molnar's avatar
Ingo Molnar committed
1264
	mutex_unlock(&cache_chain_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
1265
1266
1267
1268
1269
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1270
1271
1272
/*
 * swap the static kmem_list3 with kmalloced memory
 */
Andrew Morton's avatar
Andrew Morton committed
1273
1274
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

Andrew Morton's avatar
Andrew Morton committed
1289
1290
1291
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
Linus Torvalds's avatar
Linus Torvalds committed
1292
1293
1294
1295
1296
1297
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1298
	int i;
1299
	int order;
1300
1301
1302
1303
1304
1305

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
Linus Torvalds's avatar
Linus Torvalds committed
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
Andrew Morton's avatar
Andrew Morton committed
1316
1317
1318
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1319
1320
1321
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
Linus Torvalds's avatar
Linus Torvalds committed
1322
	 * 2) Create the first kmalloc cache.
1323
	 *    The struct kmem_cache for the new cache is allocated normally.
1324
1325
1326
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
Linus Torvalds's avatar
Linus Torvalds committed
1327
1328
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1329
1330
1331
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds's avatar
Linus Torvalds committed
1332
1333
1334
1335
1336
1337
1338
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1339
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds's avatar
Linus Torvalds committed
1340

Andrew Morton's avatar
Andrew Morton committed
1341
1342
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
Linus Torvalds's avatar
Linus Torvalds committed
1343

1344
1345
1346
1347
1348
1349
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1350
	BUG_ON(!cache_cache.num);
1351
	cache_cache.gfporder = order;
1352
1353
1354
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
Linus Torvalds's avatar
Linus Torvalds committed
1355
1356
1357
1358
1359

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

Andrew Morton's avatar
Andrew Morton committed
1360
1361
1362
1363
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1364
1365
1366
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Morton's avatar
Andrew Morton committed
1367
1368
1369
1370
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1371

Andrew Morton's avatar
Andrew Morton committed
1372
	if (INDEX_AC != INDEX_L3) {
1373
		sizes[INDEX_L3].cs_cachep =
Andrew Morton's avatar
Andrew Morton committed
1374
1375
1376
1377
1378
1379
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1380

1381
1382
	slab_early_init = 0;

Linus Torvalds's avatar
Linus Torvalds committed