slab.c 111 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54
55
56
57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59
60
61
62
63
64
65
66
67
68
69
70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72
73
74
75
76
77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78
79
80
81
82
83
84
85
86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87
88
89
90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92
93
94
95
96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99
100
101
102
103
104
105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
Ingo Molnar's avatar
Ingo Molnar committed
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120
121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122
123
124
125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126
127
#include <trace/events/kmem.h>

128
129
#include	"internal.h"

130
131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155
156
157
158
159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160
161
162
163
164
165
166
167
168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

Linus Torvalds's avatar
Linus Torvalds committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
189
190
191
192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
Linus Torvalds's avatar
Linus Torvalds committed
193
194
};

Joonsoo Kim's avatar
Joonsoo Kim committed
195
196
197
198
199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200
201
202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211
212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216
217
218
219
220
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
221
222
static int slab_early_init = 1;

223
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
224

225
static void kmem_cache_node_init(struct kmem_cache_node *parent)
226
227
228
229
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
230
231
	parent->active_slabs = 0;
	parent->free_slabs = 0;
232
233
	parent->shared = NULL;
	parent->alien = NULL;
234
	parent->colour_next = 0;
235
236
237
238
239
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
240
241
242
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
243
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
244
245
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
246
247
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
248
249
250
251
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
252

253
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
Linus Torvalds's avatar
Linus Torvalds committed
254
#define CFLGS_OFF_SLAB		(0x80000000UL)
255
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
256
257
258
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
259
260
261
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
262
 *
Adrian Bunk's avatar
Adrian Bunk committed
263
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
264
265
 * which could lock up otherwise freeable slabs.
 */
266
267
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
268
269
270
271
272
273

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
274
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
275
276
277
278
279
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
280
281
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
282
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
283
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
284
285
286
287
288
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
289
290
291
292
293
294
295
296
297
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
298
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
299
300
301
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
302
#define	STATS_INC_NODEFREES(x)	do { } while (0)
303
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
304
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
305
306
307
308
309
310
311
312
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
313
314
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
315
 * 0		: objp
316
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
317
318
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
319
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
320
 * 		redzone word.
321
 * cachep->obj_offset: The real object.
322
323
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
324
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
325
 */
326
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
327
{
328
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
329
330
}

331
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
332
333
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334
335
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
336
337
}

338
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
339
340
341
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
342
		return (unsigned long long *)(objp + cachep->size -
343
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
344
					      REDZONE_ALIGN);
345
	return (unsigned long long *) (objp + cachep->size -
346
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
347
348
}

349
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
350
351
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
352
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
353
354
355
356
}

#else

357
#define obj_offset(x)			0
358
359
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
360
361
362
363
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

364
365
#ifdef CONFIG_DEBUG_SLAB_LEAK

366
static inline bool is_store_user_clean(struct kmem_cache *cachep)
367
{
368
369
	return atomic_read(&cachep->store_user_clean) == 1;
}
370

371
372
373
374
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
375

376
377
378
379
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
380
381
382
}

#else
383
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384
385
386

#endif

Linus Torvalds's avatar
Linus Torvalds committed
387
/*
388
389
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
390
 */
391
392
393
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
394
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
395

396
397
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
398
	struct page *page = virt_to_head_page(obj);
399
	return page->slab_cache;
400
401
}

402
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
403
404
				 unsigned int idx)
{
405
	return page->s_mem + cache->size * idx;
406
407
}

408
/*
409
410
411
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
412
413
414
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
415
					const struct page *page, void *obj)
416
{
417
	u32 offset = (obj - page->s_mem);
418
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
419
420
}

421
#define BOOT_CPUCACHE_ENTRIES	1
Linus Torvalds's avatar
Linus Torvalds committed
422
/* internal cache of cache description objs */
423
static struct kmem_cache kmem_cache_boot = {
424
425
426
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
427
	.size = sizeof(struct kmem_cache),
428
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
429
430
};

431
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
432

433
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
434
{
435
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
436
437
}

Andrew Morton's avatar
Andrew Morton committed
438
439
440
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
441
442
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
443
{
444
	unsigned int num;
445
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
446

447
448
449
450
451
452
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
453
454
455
456
457
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
458
459
460
461
462
463
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
464
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
465
		num = slab_size / buffer_size;
466
		*left_over = slab_size % buffer_size;
467
	} else {
468
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
469
470
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
471
	}
472
473

	return num;
Linus Torvalds's avatar
Linus Torvalds committed
474
475
}

476
#if DEBUG
477
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
478

Andrew Morton's avatar
Andrew Morton committed
479
480
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
481
{
482
	pr_err("slab error in %s(): cache `%s': %s\n",
483
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
484
	dump_stack();
485
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
486
}
487
#endif
Linus Torvalds's avatar
Linus Torvalds committed
488

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

505
506
507
508
509
510
511
512
513
514
515
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

516
517
518
519
520
521
522
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
523
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524
525
526

static void init_reap_node(int cpu)
{
527
528
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
529
530
531
532
}

static void next_reap_node(void)
{
533
	int node = __this_cpu_read(slab_reap_node);
534

535
	node = next_node_in(node, node_online_map);
536
	__this_cpu_write(slab_reap_node, node);
537
538
539
540
541
542
543
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
544
545
546
547
548
549
550
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
551
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
552
{
553
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
554
555
556
557
558
559

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
560
	if (keventd_up() && reap_work->work.func == NULL) {
561
		init_reap_node(cpu);
562
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
563
564
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
565
566
567
	}
}

568
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
569
{
570
571
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
572
	 * However, when such objects are allocated or transferred to another
573
574
575
576
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
577
578
579
580
581
582
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
583
	}
584
585
586
587
588
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
589
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
590
591
592
593
594
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
595
596
}

597
598
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
599
{
600
601
602
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
603

604
605
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
606

607
608
609
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
610

611
	slabs_destroy(cachep, &list);
612
613
}

614
615
616
617
618
619
620
621
622
623
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
624
	int nr = min3(from->avail, max, to->limit - to->avail);
625
626
627
628
629
630
631
632
633
634
635
636

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

637
638
639
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
640
#define reap_alien(cachep, n) do { } while (0)
641

Joonsoo Kim's avatar
Joonsoo Kim committed
642
643
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
644
{
645
	return NULL;
646
647
}

Joonsoo Kim's avatar
Joonsoo Kim committed
648
static inline void free_alien_cache(struct alien_cache **ac_ptr)
649
650
651
652
653
654
655
656
657
658
659
660
661
662
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

663
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
664
665
666
667
668
		 gfp_t flags, int nodeid)
{
	return NULL;
}

David Rientjes's avatar
David Rientjes committed
669
670
static inline gfp_t gfp_exact_node(gfp_t flags)
{
671
	return flags & ~__GFP_NOFAIL;
David Rientjes's avatar
David Rientjes committed
672
673
}

674
675
#else	/* CONFIG_NUMA */

676
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
677
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
678

Joonsoo Kim's avatar
Joonsoo Kim committed
679
680
681
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
682
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
683
684
685
686
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
687
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
688
689
690
691
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
692
{
Joonsoo Kim's avatar
Joonsoo Kim committed
693
	struct alien_cache **alc_ptr;
694
	size_t memsize = sizeof(void *) * nr_node_ids;
695
696
697
698
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
699
700
701
702
703
704
705
706
707
708
709
710
711
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
712
713
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
714
	return alc_ptr;
715
716
}

Joonsoo Kim's avatar
Joonsoo Kim committed
717
static void free_alien_cache(struct alien_cache **alc_ptr)
718
719
720
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
721
	if (!alc_ptr)
722
723
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
724
725
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
726
727
}

728
static void __drain_alien_cache(struct kmem_cache *cachep,
729
730
				struct array_cache *ac, int node,
				struct list_head *list)
731
{
732
	struct kmem_cache_node *n = get_node(cachep, node);
733
734

	if (ac->avail) {
735
		spin_lock(&n->list_lock);
736
737
738
739
740
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
741
742
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
743

744
		free_block(cachep, ac->entry, ac->avail, node, list);
745
		ac->avail = 0;
746
		spin_unlock(&n->list_lock);
747
748
749
	}
}

750
751
752
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
753
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
754
{
755
	int node = __this_cpu_read(slab_reap_node);
756

757
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
758
759
760
761
762
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
763
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
764
765
766
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
767
				spin_unlock_irq(&alc->lock);
768
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
769
			}
770
771
772
773
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
774
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
775
				struct alien_cache **alien)
776
{
777
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
778
	struct alien_cache *alc;
779
780
781
782
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
783
784
		alc = alien[i];
		if (alc) {
785
786
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
787
			ac = &alc->ac;
788
			spin_lock_irqsave(&alc->lock, flags);
789
			__drain_alien_cache(cachep, ac, i, &list);
790
			spin_unlock_irqrestore(&alc->lock, flags);
791
			slabs_destroy(cachep, &list);
792
793
794
		}
	}
}
795

796
797
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
798
{
799
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
800
801
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
802
	LIST_HEAD(list);
803

804
	n = get_node(cachep, node);
805
	STATS_INC_NODEFREES(cachep);
806
807
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
808
		ac = &alien->ac;
809
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
810
		if (unlikely(ac->avail == ac->limit)) {
811
			STATS_INC_ACOVERFLOW(cachep);
812
			__drain_alien_cache(cachep, ac, page_node, &list);
813
		}
814
		ac->entry[ac->avail++] = objp;
815
		spin_unlock(&alien->lock);
816
		slabs_destroy(cachep, &list);
817
	} else {
818
		n = get_node(cachep, page_node);
819
		spin_lock(&n->list_lock);
820
		free_block(cachep, &objp, 1, page_node, &list);
821
		spin_unlock(&n->list_lock);
822
		slabs_destroy(cachep, &list);
823
824
825
	}
	return 1;
}
826
827
828
829
830
831
832
833
834
835
836
837
838
839

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
David Rientjes's avatar
David Rientjes committed
840
841

/*
842
843
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
David Rientjes's avatar
David Rientjes committed
844
845
846
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
847
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
David Rientjes's avatar
David Rientjes committed
848
}
849
850
#endif

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

891
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
892
/*
893
 * Allocates and initializes node for a node on each slab cache, used for
894
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
895
 * will be allocated off-node since memory is not yet online for the new node.
896
 * When hotplugging memory or a cpu, existing node are not replaced if
897
898
 * already in use.
 *
899
 * Must hold slab_mutex.
900
 */
901
static int init_cache_node_node(int node)
902
{
903
	int ret;
904
905
	struct kmem_cache *cachep;

906
	list_for_each_entry(cachep, &slab_caches, list) {
907
908
909
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
910
	}
911

912
913
	return 0;
}
914
#endif
915

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

965
966
967
968
969
970
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
971
	if (old_shared && force_change)
972
973
		synchronize_sched();

974
975
976
977
978
979
980
981
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

982
983
#ifdef CONFIG_SMP

984
static void cpuup_canceled(long cpu)
985
986
{
	struct kmem_cache *cachep;
987
	struct kmem_cache_node *n = NULL;
988
	int node = cpu_to_mem(cpu);
989
	const struct cpumask *mask = cpumask_of_node(node);
990

991
	list_for_each_entry(cachep, &slab_caches, list) {
992
993
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
994
		struct alien_cache **alien;
995
		LIST_HEAD(list);
996

997
		n = get_node(cachep, node);
998
		if (!n)
999
			continue;
1000

1001
		spin_lock_irq(&n->list_lock);
1002

1003
1004
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1005
1006
1007
1008

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1009
			free_block(cachep, nc->entry, nc->avail, node, &list);
1010
1011
			nc->avail = 0;
		}
1012

1013
		if (!cpumask_empty(mask)) {
1014
			spin_unlock_irq(&n->list_lock);
1015
			goto free_slab;
1016
1017
		}

1018
		shared = n->shared;
1019
1020
		if (shared) {
			free_block(cachep, shared->entry,
1021
				   shared->avail, node, &list);
1022
			n->shared = NULL;
1023
1024
		}

1025
1026
		alien = n->alien;
		n->alien = NULL;
1027

1028
		spin_unlock_irq(&n->list_lock);
1029
1030
1031
1032
1033
1034

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1035
1036

free_slab:
1037
		slabs_destroy(cachep, &list);
1038
1039
1040
1041
1042
1043
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1044
	list_for_each_entry(cachep, &slab_caches, list) {
1045
		n = get_node(cachep, node);
1046
		if (!n)
1047
			continue;
1048
		drain_freelist(cachep, n, INT_MAX);
1049
1050
1051
	}
}

1052
static int cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1053
{
1054
	struct kmem_cache *cachep;
1055
	int node = cpu_to_mem(cpu);
1056
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1057

1058
1059
1060
1061
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1062
	 * kmem_cache_node and not this cpu's kmem_cache_node
1063
	 */
1064
	err = init_cache_node_node(node);
1065
1066
	if (err < 0)
		goto bad;
1067
1068