regmap-irq.c 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
/*
 * regmap based irq_chip
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/export.h>
14
#include <linux/device.h>
15
16
17
#include <linux/regmap.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
18
#include <linux/irqdomain.h>
19
#include <linux/pm_runtime.h>
20
21
22
23
24
25
#include <linux/slab.h>

#include "internal.h"

struct regmap_irq_chip_data {
	struct mutex lock;
26
	struct irq_chip irq_chip;
27
28

	struct regmap *map;
Mark Brown's avatar
Mark Brown committed
29
	const struct regmap_irq_chip *chip;
30
31

	int irq_base;
32
	struct irq_domain *domain;
33

34
35
36
	int irq;
	int wake_count;

37
38
39
	unsigned int *status_buf;
	unsigned int *mask_buf;
	unsigned int *mask_buf_def;
40
	unsigned int *wake_buf;
41
42

	unsigned int irq_reg_stride;
43
44
45
46
47
48
};

static inline const
struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
				     int irq)
{
49
	return &data->chip->irqs[irq];
50
51
52
53
54
55
56
57
58
59
60
61
}

static void regmap_irq_lock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);

	mutex_lock(&d->lock);
}

static void regmap_irq_sync_unlock(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
62
	struct regmap *map = d->map;
63
	int i, ret;
64
	u32 reg;
65

66
67
68
69
70
71
72
	if (d->chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0)
			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
				ret);
	}

73
74
75
76
77
78
	/*
	 * If there's been a change in the mask write it back to the
	 * hardware.  We rely on the use of the regmap core cache to
	 * suppress pointless writes.
	 */
	for (i = 0; i < d->chip->num_regs; i++) {
79
80
		reg = d->chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
81
82
83
84
85
		if (d->chip->mask_invert)
			ret = regmap_update_bits(d->map, reg,
					 d->mask_buf_def[i], ~d->mask_buf[i]);
		else
			ret = regmap_update_bits(d->map, reg,
86
87
88
					 d->mask_buf_def[i], d->mask_buf[i]);
		if (ret != 0)
			dev_err(d->map->dev, "Failed to sync masks in %x\n",
89
				reg);
90
91
	}

92
93
94
	if (d->chip->runtime_pm)
		pm_runtime_put(map->dev);

95
96
97
98
99
100
101
102
103
104
	/* If we've changed our wakeup count propagate it to the parent */
	if (d->wake_count < 0)
		for (i = d->wake_count; i < 0; i++)
			irq_set_irq_wake(d->irq, 0);
	else if (d->wake_count > 0)
		for (i = 0; i < d->wake_count; i++)
			irq_set_irq_wake(d->irq, 1);

	d->wake_count = 0;

105
106
107
108
109
110
	mutex_unlock(&d->lock);
}

static void regmap_irq_enable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
111
	struct regmap *map = d->map;
112
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
113

114
	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
115
116
117
118
119
}

static void regmap_irq_disable(struct irq_data *data)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
120
	struct regmap *map = d->map;
121
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
122

123
	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
124
125
}

126
127
128
129
130
131
132
static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
{
	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
	struct regmap *map = d->map;
	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);

	if (on) {
133
134
135
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				&= ~irq_data->mask;
136
137
		d->wake_count++;
	} else {
138
139
140
		if (d->wake_buf)
			d->wake_buf[irq_data->reg_offset / map->reg_stride]
				|= irq_data->mask;
141
142
143
144
145
146
		d->wake_count--;
	}

	return 0;
}

147
static const struct irq_chip regmap_irq_chip = {
148
149
150
151
	.irq_bus_lock		= regmap_irq_lock,
	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
	.irq_disable		= regmap_irq_disable,
	.irq_enable		= regmap_irq_enable,
152
	.irq_set_wake		= regmap_irq_set_wake,
153
154
155
156
157
};

static irqreturn_t regmap_irq_thread(int irq, void *d)
{
	struct regmap_irq_chip_data *data = d;
Mark Brown's avatar
Mark Brown committed
158
	const struct regmap_irq_chip *chip = data->chip;
159
160
	struct regmap *map = data->map;
	int ret, i;
161
	bool handled = false;
162
	u32 reg;
163

164
165
166
167
168
169
170
171
172
	if (chip->runtime_pm) {
		ret = pm_runtime_get_sync(map->dev);
		if (ret < 0) {
			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
				ret);
			return IRQ_NONE;
		}
	}

173
	for (i = 0; i < data->chip->num_regs; i++) {
174
		ret = regmap_read(map, chip->status_base + (i * map->reg_stride
175
176
177
178
179
180
				   * data->irq_reg_stride),
				   &data->status_buf[i]);

		if (ret != 0) {
			dev_err(map->dev, "Failed to read IRQ status: %d\n",
					ret);
181
182
			if (chip->runtime_pm)
				pm_runtime_put(map->dev);
183
184
			return IRQ_NONE;
		}
185
	}
186

187
188
189
190
191
192
193
194
	/*
	 * Ignore masked IRQs and ack if we need to; we ack early so
	 * there is no race between handling and acknowleding the
	 * interrupt.  We assume that typically few of the interrupts
	 * will fire simultaneously so don't worry about overhead from
	 * doing a write per register.
	 */
	for (i = 0; i < data->chip->num_regs; i++) {
195
196
197
		data->status_buf[i] &= ~data->mask_buf[i];

		if (data->status_buf[i] && chip->ack_base) {
198
199
200
			reg = chip->ack_base +
				(i * map->reg_stride * data->irq_reg_stride);
			ret = regmap_write(map, reg, data->status_buf[i]);
201
202
			if (ret != 0)
				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
203
					reg, ret);
204
205
206
207
		}
	}

	for (i = 0; i < chip->num_irqs; i++) {
208
209
		if (data->status_buf[chip->irqs[i].reg_offset /
				     map->reg_stride] & chip->irqs[i].mask) {
210
			handle_nested_irq(irq_find_mapping(data->domain, i));
211
			handled = true;
212
213
214
		}
	}

215
216
217
	if (chip->runtime_pm)
		pm_runtime_put(map->dev);

218
219
220
221
	if (handled)
		return IRQ_HANDLED;
	else
		return IRQ_NONE;
222
223
}

224
225
226
227
228
229
static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
			  irq_hw_number_t hw)
{
	struct regmap_irq_chip_data *data = h->host_data;

	irq_set_chip_data(virq, data);
230
	irq_set_chip(virq, &data->irq_chip);
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
	irq_set_nested_thread(virq, 1);

	/* ARM needs us to explicitly flag the IRQ as valid
	 * and will set them noprobe when we do so. */
#ifdef CONFIG_ARM
	set_irq_flags(virq, IRQF_VALID);
#else
	irq_set_noprobe(virq);
#endif

	return 0;
}

static struct irq_domain_ops regmap_domain_ops = {
	.map	= regmap_irq_map,
	.xlate	= irq_domain_xlate_twocell,
};

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/**
 * regmap_add_irq_chip(): Use standard regmap IRQ controller handling
 *
 * map:       The regmap for the device.
 * irq:       The IRQ the device uses to signal interrupts
 * irq_flags: The IRQF_ flags to use for the primary interrupt.
 * chip:      Configuration for the interrupt controller.
 * data:      Runtime data structure for the controller, allocated on success
 *
 * Returns 0 on success or an errno on failure.
 *
 * In order for this to be efficient the chip really should use a
 * register cache.  The chip driver is responsible for restoring the
 * register values used by the IRQ controller over suspend and resume.
 */
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
Mark Brown's avatar
Mark Brown committed
265
			int irq_base, const struct regmap_irq_chip *chip,
266
267
268
			struct regmap_irq_chip_data **data)
{
	struct regmap_irq_chip_data *d;
269
	int i;
270
	int ret = -ENOMEM;
271
	u32 reg;
272

273
274
275
276
277
278
279
280
	for (i = 0; i < chip->num_irqs; i++) {
		if (chip->irqs[i].reg_offset % map->reg_stride)
			return -EINVAL;
		if (chip->irqs[i].reg_offset / map->reg_stride >=
		    chip->num_regs)
			return -EINVAL;
	}

281
282
283
284
285
286
287
	if (irq_base) {
		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
		if (irq_base < 0) {
			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
				 irq_base);
			return irq_base;
		}
288
289
290
291
292
293
	}

	d = kzalloc(sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;

294
295
	*data = d;

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
	d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
				GFP_KERNEL);
	if (!d->status_buf)
		goto err_alloc;

	d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
			      GFP_KERNEL);
	if (!d->mask_buf)
		goto err_alloc;

	d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs,
				  GFP_KERNEL);
	if (!d->mask_buf_def)
		goto err_alloc;

311
312
313
314
315
316
317
	if (chip->wake_base) {
		d->wake_buf = kzalloc(sizeof(unsigned int) * chip->num_regs,
				      GFP_KERNEL);
		if (!d->wake_buf)
			goto err_alloc;
	}

318
	d->irq_chip = regmap_irq_chip;
319
	d->irq_chip.name = chip->name;
320
	d->irq = irq;
321
322
323
	d->map = map;
	d->chip = chip;
	d->irq_base = irq_base;
324
325
326
327
328
329

	if (chip->irq_reg_stride)
		d->irq_reg_stride = chip->irq_reg_stride;
	else
		d->irq_reg_stride = 1;

330
331
332
	mutex_init(&d->lock);

	for (i = 0; i < chip->num_irqs; i++)
333
		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
334
335
336
337
338
			|= chip->irqs[i].mask;

	/* Mask all the interrupts by default */
	for (i = 0; i < chip->num_regs; i++) {
		d->mask_buf[i] = d->mask_buf_def[i];
339
340
		reg = chip->mask_base +
			(i * map->reg_stride * d->irq_reg_stride);
341
342
343
344
345
		if (chip->mask_invert)
			ret = regmap_update_bits(map, reg,
					 d->mask_buf[i], ~d->mask_buf[i]);
		else
			ret = regmap_update_bits(map, reg,
346
					 d->mask_buf[i], d->mask_buf[i]);
347
348
		if (ret != 0) {
			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
349
				reg, ret);
350
351
352
353
			goto err_alloc;
		}
	}

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
	/* Wake is disabled by default */
	if (d->wake_buf) {
		for (i = 0; i < chip->num_regs; i++) {
			d->wake_buf[i] = d->mask_buf_def[i];
			reg = chip->wake_base +
				(i * map->reg_stride * d->irq_reg_stride);
			ret = regmap_update_bits(map, reg, d->wake_buf[i],
						 d->wake_buf[i]);
			if (ret != 0) {
				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
					reg, ret);
				goto err_alloc;
			}
		}
	}

370
371
372
373
374
375
376
377
378
379
380
381
	if (irq_base)
		d->domain = irq_domain_add_legacy(map->dev->of_node,
						  chip->num_irqs, irq_base, 0,
						  &regmap_domain_ops, d);
	else
		d->domain = irq_domain_add_linear(map->dev->of_node,
						  chip->num_irqs,
						  &regmap_domain_ops, d);
	if (!d->domain) {
		dev_err(map->dev, "Failed to create IRQ domain\n");
		ret = -ENOMEM;
		goto err_alloc;
382
383
384
385
386
387
	}

	ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags,
				   chip->name, d);
	if (ret != 0) {
		dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret);
388
		goto err_domain;
389
390
391
392
	}

	return 0;

393
394
err_domain:
	/* Should really dispose of the domain but... */
395
err_alloc:
396
	kfree(d->wake_buf);
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
	kfree(d->status_buf);
	kfree(d);
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_add_irq_chip);

/**
 * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip
 *
 * @irq: Primary IRQ for the device
 * @d:   regmap_irq_chip_data allocated by regmap_add_irq_chip()
 */
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
{
	if (!d)
		return;

	free_irq(irq, d);
417
	/* We should unmap the domain but... */
418
	kfree(d->wake_buf);
419
420
421
422
423
424
	kfree(d->mask_buf_def);
	kfree(d->mask_buf);
	kfree(d->status_buf);
	kfree(d);
}
EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
425
426
427
428
429
430
431
432
433
434

/**
 * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip
 *
 * Useful for drivers to request their own IRQs.
 *
 * @data: regmap_irq controller to operate on.
 */
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
{
435
	WARN_ON(!data->irq_base);
436
437
438
	return data->irq_base;
}
EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
439
440
441
442
443
444
445
446
447
448
449

/**
 * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ
 *
 * Useful for drivers to request their own IRQs.
 *
 * @data: regmap_irq controller to operate on.
 * @irq: index of the interrupt requested in the chip IRQs
 */
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
{
450
451
452
453
	/* Handle holes in the IRQ list */
	if (!data->chip->irqs[irq].mask)
		return -EINVAL;

454
455
456
	return irq_create_mapping(data->domain, irq);
}
EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

/**
 * regmap_irq_get_domain(): Retrieve the irq_domain for the chip
 *
 * Useful for drivers to request their own IRQs and for integration
 * with subsystems.  For ease of integration NULL is accepted as a
 * domain, allowing devices to just call this even if no domain is
 * allocated.
 *
 * @data: regmap_irq controller to operate on.
 */
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
{
	if (data)
		return data->domain;
	else
		return NULL;
}
EXPORT_SYMBOL_GPL(regmap_irq_get_domain);