SecMain.c 29.8 KB
Newer Older
1
2
3
/** @file
  Main SEC phase code.  Transitions to PEI.

4
  Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.<BR>
5
  (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
6
  Copyright (c) 2020, Advanced Micro Devices, Inc. All rights reserved.<BR>
7

8
  SPDX-License-Identifier: BSD-2-Clause-Patent
9
10
11
12
13
14
15
16
17
18
19

**/

#include <PiPei.h>

#include <Library/PeimEntryPoint.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/PeiServicesLib.h>
#include <Library/PcdLib.h>
20
#include <Library/CpuLib.h>
21
22
23
24
25
26
27
#include <Library/UefiCpuLib.h>
#include <Library/DebugAgentLib.h>
#include <Library/IoLib.h>
#include <Library/PeCoffLib.h>
#include <Library/PeCoffGetEntryPointLib.h>
#include <Library/PeCoffExtraActionLib.h>
#include <Library/ExtractGuidedSectionLib.h>
28
#include <Library/LocalApicLib.h>
29
#include <Library/CpuExceptionHandlerLib.h>
30
#include <Ppi/TemporaryRamSupport.h>
Min Xu's avatar
Min Xu committed
31
#include <Library/PlatformInitLib.h>
32
#include <Library/CcProbeLib.h>
33
34
#include "AmdSev.h"

35
36
37
#define SEC_IDT_ENTRY_COUNT  34

typedef struct _SEC_IDT_TABLE {
38
39
  EFI_PEI_SERVICES            *PeiService;
  IA32_IDT_GATE_DESCRIPTOR    IdtTable[SEC_IDT_ENTRY_COUNT];
40
41
42
43
44
} SEC_IDT_TABLE;

VOID
EFIAPI
SecStartupPhase2 (
45
  IN VOID  *Context
46
47
48
49
50
  );

EFI_STATUS
EFIAPI
TemporaryRamMigration (
51
52
53
54
  IN CONST EFI_PEI_SERVICES  **PeiServices,
  IN EFI_PHYSICAL_ADDRESS    TemporaryMemoryBase,
  IN EFI_PHYSICAL_ADDRESS    PermanentMemoryBase,
  IN UINTN                   CopySize
55
56
57
58
  );

//
//
59
//
60
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI  mTemporaryRamSupportPpi = {
61
62
63
  TemporaryRamMigration
};

64
EFI_PEI_PPI_DESCRIPTOR  mPrivateDispatchTable[] = {
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  {
    (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
    &gEfiTemporaryRamSupportPpiGuid,
    &mTemporaryRamSupportPpi
  },
};

//
// Template of an IDT entry pointing to 10:FFFFFFE4h.
//
IA32_IDT_GATE_DESCRIPTOR  mIdtEntryTemplate = {
  {                                      // Bits
    0xffe4,                              // OffsetLow
    0x10,                                // Selector
    0x0,                                 // Reserved_0
    IA32_IDT_GATE_TYPE_INTERRUPT_32,     // GateType
    0xffff                               // OffsetHigh
82
  }
83
84
85
86
87
88
89
90
91
92
93
94
95
96
};

/**
  Locates the main boot firmware volume.

  @param[in,out]  BootFv  On input, the base of the BootFv
                          On output, the decompressed main firmware volume

  @retval EFI_SUCCESS    The main firmware volume was located and decompressed
  @retval EFI_NOT_FOUND  The main firmware volume was not found

**/
EFI_STATUS
FindMainFv (
97
  IN OUT  EFI_FIRMWARE_VOLUME_HEADER  **BootFv
98
99
100
101
102
  )
{
  EFI_FIRMWARE_VOLUME_HEADER  *Fv;
  UINTN                       Distance;

103
  ASSERT (((UINTN)*BootFv & EFI_PAGE_MASK) == 0);
104

105
106
  Fv       = *BootFv;
  Distance = (UINTN)(*BootFv)->FvLength;
107
  do {
108
    Fv        = (EFI_FIRMWARE_VOLUME_HEADER *)((UINT8 *)Fv - EFI_PAGE_SIZE);
109
110
111
112
113
114
115
116
117
    Distance += EFI_PAGE_SIZE;
    if (Distance > SIZE_32MB) {
      return EFI_NOT_FOUND;
    }

    if (Fv->Signature != EFI_FVH_SIGNATURE) {
      continue;
    }

118
    if ((UINTN)Fv->FvLength > Distance) {
119
120
121
122
123
124
125
126
127
128
129
130
      continue;
    }

    *BootFv = Fv;
    return EFI_SUCCESS;
  } while (TRUE);
}

/**
  Locates a section within a series of sections
  with the specified section type.

131
132
133
  The Instance parameter indicates which instance of the section
  type to return. (0 is first instance, 1 is second...)

134
135
136
  @param[in]   Sections        The sections to search
  @param[in]   SizeOfSections  Total size of all sections
  @param[in]   SectionType     The section type to locate
137
  @param[in]   Instance        The section instance number
138
139
140
141
142
143
144
145
  @param[out]  FoundSection    The FFS section if found

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
146
FindFfsSectionInstance (
147
148
149
150
151
  IN  VOID                       *Sections,
  IN  UINTN                      SizeOfSections,
  IN  EFI_SECTION_TYPE           SectionType,
  IN  UINTN                      Instance,
  OUT EFI_COMMON_SECTION_HEADER  **FoundSection
152
153
  )
{
154
155
156
157
158
  EFI_PHYSICAL_ADDRESS       CurrentAddress;
  UINT32                     Size;
  EFI_PHYSICAL_ADDRESS       EndOfSections;
  EFI_COMMON_SECTION_HEADER  *Section;
  EFI_PHYSICAL_ADDRESS       EndOfSection;
159
160
161
162

  //
  // Loop through the FFS file sections within the PEI Core FFS file
  //
163
  EndOfSection  = (EFI_PHYSICAL_ADDRESS)(UINTN)Sections;
164
  EndOfSections = EndOfSection + SizeOfSections;
165
  for ( ; ;) {
166
167
168
    if (EndOfSection == EndOfSections) {
      break;
    }
169

170
171
172
173
174
    CurrentAddress = (EndOfSection + 3) & ~(3ULL);
    if (CurrentAddress >= EndOfSections) {
      return EFI_VOLUME_CORRUPTED;
    }

175
    Section = (EFI_COMMON_SECTION_HEADER *)(UINTN)CurrentAddress;
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    Size = SECTION_SIZE (Section);
    if (Size < sizeof (*Section)) {
      return EFI_VOLUME_CORRUPTED;
    }

    EndOfSection = CurrentAddress + Size;
    if (EndOfSection > EndOfSections) {
      return EFI_VOLUME_CORRUPTED;
    }

    //
    // Look for the requested section type
    //
    if (Section->Type == SectionType) {
191
192
193
194
195
196
      if (Instance == 0) {
        *FoundSection = Section;
        return EFI_SUCCESS;
      } else {
        Instance--;
      }
197
198
199
200
201
202
    }
  }

  return EFI_NOT_FOUND;
}

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/**
  Locates a section within a series of sections
  with the specified section type.

  @param[in]   Sections        The sections to search
  @param[in]   SizeOfSections  Total size of all sections
  @param[in]   SectionType     The section type to locate
  @param[out]  FoundSection    The FFS section if found

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
FindFfsSectionInSections (
219
220
221
222
  IN  VOID                       *Sections,
  IN  UINTN                      SizeOfSections,
  IN  EFI_SECTION_TYPE           SectionType,
  OUT EFI_COMMON_SECTION_HEADER  **FoundSection
223
224
225
226
227
228
229
230
231
232
233
  )
{
  return FindFfsSectionInstance (
           Sections,
           SizeOfSections,
           SectionType,
           0,
           FoundSection
           );
}

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/**
  Locates a FFS file with the specified file type and a section
  within that file with the specified section type.

  @param[in]   Fv            The firmware volume to search
  @param[in]   FileType      The file type to locate
  @param[in]   SectionType   The section type to locate
  @param[out]  FoundSection  The FFS section if found

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
FindFfsFileAndSection (
250
251
252
253
  IN  EFI_FIRMWARE_VOLUME_HEADER  *Fv,
  IN  EFI_FV_FILETYPE             FileType,
  IN  EFI_SECTION_TYPE            SectionType,
  OUT EFI_COMMON_SECTION_HEADER   **FoundSection
254
255
  )
{
256
257
258
259
260
261
  EFI_STATUS            Status;
  EFI_PHYSICAL_ADDRESS  CurrentAddress;
  EFI_PHYSICAL_ADDRESS  EndOfFirmwareVolume;
  EFI_FFS_FILE_HEADER   *File;
  UINT32                Size;
  EFI_PHYSICAL_ADDRESS  EndOfFile;
262
263

  if (Fv->Signature != EFI_FVH_SIGNATURE) {
264
    DEBUG ((DEBUG_ERROR, "FV at %p does not have FV header signature\n", Fv));
265
266
267
    return EFI_VOLUME_CORRUPTED;
  }

268
  CurrentAddress      = (EFI_PHYSICAL_ADDRESS)(UINTN)Fv;
269
270
271
272
273
274
275
276
277
278
279
  EndOfFirmwareVolume = CurrentAddress + Fv->FvLength;

  //
  // Loop through the FFS files in the Boot Firmware Volume
  //
  for (EndOfFile = CurrentAddress + Fv->HeaderLength; ; ) {
    CurrentAddress = (EndOfFile + 7) & ~(7ULL);
    if (CurrentAddress > EndOfFirmwareVolume) {
      return EFI_VOLUME_CORRUPTED;
    }

280
    File = (EFI_FFS_FILE_HEADER *)(UINTN)CurrentAddress;
281
    Size = FFS_FILE_SIZE (File);
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    if (Size < (sizeof (*File) + sizeof (EFI_COMMON_SECTION_HEADER))) {
      return EFI_VOLUME_CORRUPTED;
    }

    EndOfFile = CurrentAddress + Size;
    if (EndOfFile > EndOfFirmwareVolume) {
      return EFI_VOLUME_CORRUPTED;
    }

    //
    // Look for the request file type
    //
    if (File->Type != FileType) {
      continue;
    }

    Status = FindFfsSectionInSections (
299
300
               (VOID *)(File + 1),
               (UINTN)EndOfFile - (UINTN)(File + 1),
301
302
303
304
305
306
307
308
309
310
311
312
313
               SectionType,
               FoundSection
               );
    if (!EFI_ERROR (Status) || (Status == EFI_VOLUME_CORRUPTED)) {
      return Status;
    }
  }
}

/**
  Locates the compressed main firmware volume and decompresses it.

  @param[in,out]  Fv            On input, the firmware volume to search
314
                                On output, the decompressed BOOT/PEI FV
315
316
317
318
319
320
321

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
322
DecompressMemFvs (
323
  IN OUT EFI_FIRMWARE_VOLUME_HEADER  **Fv
324
325
  )
{
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  EFI_STATUS                  Status;
  EFI_GUID_DEFINED_SECTION    *Section;
  UINT32                      OutputBufferSize;
  UINT32                      ScratchBufferSize;
  UINT16                      SectionAttribute;
  UINT32                      AuthenticationStatus;
  VOID                        *OutputBuffer;
  VOID                        *ScratchBuffer;
  EFI_COMMON_SECTION_HEADER   *FvSection;
  EFI_FIRMWARE_VOLUME_HEADER  *PeiMemFv;
  EFI_FIRMWARE_VOLUME_HEADER  *DxeMemFv;
  UINT32                      FvHeaderSize;
  UINT32                      FvSectionSize;

  FvSection = (EFI_COMMON_SECTION_HEADER *)NULL;
341
342
343
344
345

  Status = FindFfsFileAndSection (
             *Fv,
             EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
             EFI_SECTION_GUID_DEFINED,
346
             (EFI_COMMON_SECTION_HEADER **)&Section
347
348
             );
  if (EFI_ERROR (Status)) {
349
    DEBUG ((DEBUG_ERROR, "Unable to find GUID defined section\n"));
350
351
352
353
354
355
356
357
358
359
    return Status;
  }

  Status = ExtractGuidedSectionGetInfo (
             Section,
             &OutputBufferSize,
             &ScratchBufferSize,
             &SectionAttribute
             );
  if (EFI_ERROR (Status)) {
360
    DEBUG ((DEBUG_ERROR, "Unable to GetInfo for GUIDed section\n"));
361
362
363
    return Status;
  }

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
  OutputBuffer  = (VOID *)((UINT8 *)(UINTN)PcdGet32 (PcdOvmfDxeMemFvBase) + SIZE_1MB);
  ScratchBuffer = ALIGN_POINTER ((UINT8 *)OutputBuffer + OutputBufferSize, SIZE_1MB);

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: OutputBuffer@%p+0x%x ScratchBuffer@%p+0x%x "
    "PcdOvmfDecompressionScratchEnd=0x%x\n",
    __FUNCTION__,
    OutputBuffer,
    OutputBufferSize,
    ScratchBuffer,
    ScratchBufferSize,
    PcdGet32 (PcdOvmfDecompressionScratchEnd)
    ));
  ASSERT (
    (UINTN)ScratchBuffer + ScratchBufferSize ==
    PcdGet32 (PcdOvmfDecompressionScratchEnd)
    );
382

383
384
385
386
387
388
389
  Status = ExtractGuidedSectionDecode (
             Section,
             &OutputBuffer,
             ScratchBuffer,
             &AuthenticationStatus
             );
  if (EFI_ERROR (Status)) {
390
    DEBUG ((DEBUG_ERROR, "Error during GUID section decode\n"));
391
392
393
    return Status;
  }

394
  Status = FindFfsSectionInstance (
395
396
397
             OutputBuffer,
             OutputBufferSize,
             EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
398
             0,
399
             &FvSection
400
401
             );
  if (EFI_ERROR (Status)) {
402
    DEBUG ((DEBUG_ERROR, "Unable to find PEI FV section\n"));
403
404
405
    return Status;
  }

406
407
408
409
  ASSERT (
    SECTION_SIZE (FvSection) ==
    (PcdGet32 (PcdOvmfPeiMemFvSize) + sizeof (*FvSection))
    );
410
  ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
411

412
413
  PeiMemFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfPeiMemFvBase);
  CopyMem (PeiMemFv, (VOID *)(FvSection + 1), PcdGet32 (PcdOvmfPeiMemFvSize));
414
415

  if (PeiMemFv->Signature != EFI_FVH_SIGNATURE) {
416
    DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", PeiMemFv));
417
418
419
420
421
422
423
424
425
    CpuDeadLoop ();
    return EFI_VOLUME_CORRUPTED;
  }

  Status = FindFfsSectionInstance (
             OutputBuffer,
             OutputBufferSize,
             EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
             1,
426
             &FvSection
427
428
             );
  if (EFI_ERROR (Status)) {
429
    DEBUG ((DEBUG_ERROR, "Unable to find DXE FV section\n"));
430
431
432
433
    return Status;
  }

  ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
434
435
436

  if (IS_SECTION2 (FvSection)) {
    FvSectionSize = SECTION2_SIZE (FvSection);
437
    FvHeaderSize  = sizeof (EFI_COMMON_SECTION_HEADER2);
438
439
  } else {
    FvSectionSize = SECTION_SIZE (FvSection);
440
    FvHeaderSize  = sizeof (EFI_COMMON_SECTION_HEADER);
441
442
443
  }

  ASSERT (FvSectionSize == (PcdGet32 (PcdOvmfDxeMemFvSize) + FvHeaderSize));
444

445
446
  DxeMemFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfDxeMemFvBase);
  CopyMem (DxeMemFv, (VOID *)((UINTN)FvSection + FvHeaderSize), PcdGet32 (PcdOvmfDxeMemFvSize));
447
448

  if (DxeMemFv->Signature != EFI_FVH_SIGNATURE) {
449
    DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", DxeMemFv));
450
451
452
453
    CpuDeadLoop ();
    return EFI_VOLUME_CORRUPTED;
  }

454
  *Fv = PeiMemFv;
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
  return EFI_SUCCESS;
}

/**
  Locates the PEI Core entry point address

  @param[in]  Fv                 The firmware volume to search
  @param[out] PeiCoreEntryPoint  The entry point of the PEI Core image

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
FindPeiCoreImageBaseInFv (
471
472
  IN  EFI_FIRMWARE_VOLUME_HEADER  *Fv,
  OUT  EFI_PHYSICAL_ADDRESS       *PeiCoreImageBase
473
474
  )
{
475
476
  EFI_STATUS                 Status;
  EFI_COMMON_SECTION_HEADER  *Section;
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

  Status = FindFfsFileAndSection (
             Fv,
             EFI_FV_FILETYPE_PEI_CORE,
             EFI_SECTION_PE32,
             &Section
             );
  if (EFI_ERROR (Status)) {
    Status = FindFfsFileAndSection (
               Fv,
               EFI_FV_FILETYPE_PEI_CORE,
               EFI_SECTION_TE,
               &Section
               );
    if (EFI_ERROR (Status)) {
492
      DEBUG ((DEBUG_ERROR, "Unable to find PEI Core image\n"));
493
494
495
496
497
498
499
500
      return Status;
    }
  }

  *PeiCoreImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)(Section + 1);
  return EFI_SUCCESS;
}

501
502
503
504
505
506
507
508
509
510
511
512
513
514
/**
  Reads 8-bits of CMOS data.

  Reads the 8-bits of CMOS data at the location specified by Index.
  The 8-bit read value is returned.

  @param  Index  The CMOS location to read.

  @return The value read.

**/
STATIC
UINT8
CmosRead8 (
515
  IN      UINTN  Index
516
517
  )
{
518
  IoWrite8 (0x70, (UINT8)Index);
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
  return IoRead8 (0x71);
}

STATIC
BOOLEAN
IsS3Resume (
  VOID
  )
{
  return (CmosRead8 (0xF) == 0xFE);
}

STATIC
EFI_STATUS
GetS3ResumePeiFv (
534
  IN OUT EFI_FIRMWARE_VOLUME_HEADER  **PeiFv
535
536
  )
{
537
  *PeiFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfPeiMemFvBase);
538
539
540
  return EFI_SUCCESS;
}

541
542
543
544
545
546
547
548
549
550
551
552
553
/**
  Locates the PEI Core entry point address

  @param[in,out]  Fv                 The firmware volume to search
  @param[out]     PeiCoreEntryPoint  The entry point of the PEI Core image

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
VOID
FindPeiCoreImageBase (
554
555
  IN OUT  EFI_FIRMWARE_VOLUME_HEADER  **BootFv,
  OUT  EFI_PHYSICAL_ADDRESS           *PeiCoreImageBase
556
557
  )
{
558
  BOOLEAN  S3Resume;
559

560
561
  *PeiCoreImageBase = 0;

562
563
564
565
566
567
  S3Resume = IsS3Resume ();
  if (S3Resume && !FeaturePcdGet (PcdSmmSmramRequire)) {
    //
    // A malicious runtime OS may have injected something into our previously
    // decoded PEI FV, but we don't care about that unless SMM/SMRAM is required.
    //
568
    DEBUG ((DEBUG_VERBOSE, "SEC: S3 resume\n"));
569
570
    GetS3ResumePeiFv (BootFv);
  } else {
571
572
573
574
    //
    // We're either not resuming, or resuming "securely" -- we'll decompress
    // both PEI FV and DXE FV from pristine flash.
    //
575
576
577
578
579
    DEBUG ((
      DEBUG_VERBOSE,
      "SEC: %a\n",
      S3Resume ? "S3 resume (with PEI decompression)" : "Normal boot"
      ));
580
    FindMainFv (BootFv);
581

582
583
    DecompressMemFvs (BootFv);
  }
584
585
586
587
588
589
590
591
592
593

  FindPeiCoreImageBaseInFv (*BootFv, PeiCoreImageBase);
}

/**
  Find core image base.

**/
EFI_STATUS
FindImageBase (
594
595
  IN  EFI_FIRMWARE_VOLUME_HEADER  *BootFirmwareVolumePtr,
  OUT EFI_PHYSICAL_ADDRESS        *SecCoreImageBase
596
597
  )
{
598
599
600
601
602
603
604
  EFI_PHYSICAL_ADDRESS       CurrentAddress;
  EFI_PHYSICAL_ADDRESS       EndOfFirmwareVolume;
  EFI_FFS_FILE_HEADER        *File;
  UINT32                     Size;
  EFI_PHYSICAL_ADDRESS       EndOfFile;
  EFI_COMMON_SECTION_HEADER  *Section;
  EFI_PHYSICAL_ADDRESS       EndOfSection;
605
606
607

  *SecCoreImageBase = 0;

608
  CurrentAddress      = (EFI_PHYSICAL_ADDRESS)(UINTN)BootFirmwareVolumePtr;
609
610
611
612
613
614
615
616
617
618
619
  EndOfFirmwareVolume = CurrentAddress + BootFirmwareVolumePtr->FvLength;

  //
  // Loop through the FFS files in the Boot Firmware Volume
  //
  for (EndOfFile = CurrentAddress + BootFirmwareVolumePtr->HeaderLength; ; ) {
    CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL;
    if (CurrentAddress > EndOfFirmwareVolume) {
      return EFI_NOT_FOUND;
    }

620
    File = (EFI_FFS_FILE_HEADER *)(UINTN)CurrentAddress;
621
    Size = FFS_FILE_SIZE (File);
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    if (Size < sizeof (*File)) {
      return EFI_NOT_FOUND;
    }

    EndOfFile = CurrentAddress + Size;
    if (EndOfFile > EndOfFirmwareVolume) {
      return EFI_NOT_FOUND;
    }

    //
    // Look for SEC Core
    //
    if (File->Type != EFI_FV_FILETYPE_SECURITY_CORE) {
      continue;
    }

    //
    // Loop through the FFS file sections within the FFS file
    //
641
642
    EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN)(File + 1);
    for ( ; ;) {
643
      CurrentAddress = (EndOfSection + 3) & 0xfffffffffffffffcULL;
644
      Section        = (EFI_COMMON_SECTION_HEADER *)(UINTN)CurrentAddress;
645

646
      Size = SECTION_SIZE (Section);
647
648
649
650
651
652
653
654
655
656
657
658
      if (Size < sizeof (*Section)) {
        return EFI_NOT_FOUND;
      }

      EndOfSection = CurrentAddress + Size;
      if (EndOfSection > EndOfFile) {
        return EFI_NOT_FOUND;
      }

      //
      // Look for executable sections
      //
659
      if ((Section->Type == EFI_SECTION_PE32) || (Section->Type == EFI_SECTION_TE)) {
660
        if (File->Type == EFI_FV_FILETYPE_SECURITY_CORE) {
661
          *SecCoreImageBase = (PHYSICAL_ADDRESS)(UINTN)(Section + 1);
662
        }
663

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
        break;
      }
    }

    //
    // SEC Core image found
    //
    if (*SecCoreImageBase != 0) {
      return EFI_SUCCESS;
    }
  }
}

/*
  Find and return Pei Core entry point.

Gary Lin's avatar
Gary Lin committed
680
  It also find SEC and PEI Core file debug information. It will report them if
681
682
683
684
685
  remote debug is enabled.

**/
VOID
FindAndReportEntryPoints (
686
687
  IN  EFI_FIRMWARE_VOLUME_HEADER  **BootFirmwareVolumePtr,
  OUT EFI_PEI_CORE_ENTRY_POINT    *PeiCoreEntryPoint
688
689
  )
{
690
691
692
693
  EFI_STATUS                    Status;
  EFI_PHYSICAL_ADDRESS          SecCoreImageBase;
  EFI_PHYSICAL_ADDRESS          PeiCoreImageBase;
  PE_COFF_LOADER_IMAGE_CONTEXT  ImageContext;
694
695
696

  //
  // Find SEC Core and PEI Core image base
697
  //
698
699
700
701
  Status = FindImageBase (*BootFirmwareVolumePtr, &SecCoreImageBase);
  ASSERT_EFI_ERROR (Status);

  FindPeiCoreImageBase (BootFirmwareVolumePtr, &PeiCoreImageBase);
702

703
  ZeroMem ((VOID *)&ImageContext, sizeof (PE_COFF_LOADER_IMAGE_CONTEXT));
704
705
706
707
  //
  // Report SEC Core debug information when remote debug is enabled
  //
  ImageContext.ImageAddress = SecCoreImageBase;
708
  ImageContext.PdbPointer   = PeCoffLoaderGetPdbPointer ((VOID *)(UINTN)ImageContext.ImageAddress);
709
710
711
712
713
714
  PeCoffLoaderRelocateImageExtraAction (&ImageContext);

  //
  // Report PEI Core debug information when remote debug is enabled
  //
  ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)PeiCoreImageBase;
715
  ImageContext.PdbPointer   = PeCoffLoaderGetPdbPointer ((VOID *)(UINTN)ImageContext.ImageAddress);
716
717
718
719
720
  PeCoffLoaderRelocateImageExtraAction (&ImageContext);

  //
  // Find PEI Core entry point
  //
721
  Status = PeCoffLoaderGetEntryPoint ((VOID *)(UINTN)PeiCoreImageBase, (VOID **)PeiCoreEntryPoint);
722
723
724
725
726
727
728
729
730
731
  if (EFI_ERROR (Status)) {
    *PeiCoreEntryPoint = 0;
  }

  return;
}

VOID
EFIAPI
SecCoreStartupWithStack (
732
733
  IN EFI_FIRMWARE_VOLUME_HEADER  *BootFv,
  IN VOID                        *TopOfCurrentStack
734
735
  )
{
736
737
738
739
740
  EFI_SEC_PEI_HAND_OFF  SecCoreData;
  SEC_IDT_TABLE         IdtTableInStack;
  IA32_DESCRIPTOR       IdtDescriptor;
  UINT32                Index;
  volatile UINT8        *Table;
741

Min Xu's avatar
Min Xu committed
742
 #if defined (TDX_GUEST_SUPPORTED)
743
  if (CcProbe () == CcGuestTypeIntelTdx) {
Min Xu's avatar
Min Xu committed
744
745
746
747
748
749
750
751
752
753
754
755
    //
    // For Td guests, the memory map info is in TdHobLib. It should be processed
    // first so that the memory is accepted. Otherwise access to the unaccepted
    // memory will trigger tripple fault.
    //
    if (ProcessTdxHobList () != EFI_SUCCESS) {
      CpuDeadLoop ();
    }
  }

 #endif

756
757
758
759
760
  //
  // To ensure SMM can't be compromised on S3 resume, we must force re-init of
  // the BaseExtractGuidedSectionLib. Since this is before library contructors
  // are called, we must use a loop rather than SetMem.
  //
761
  Table = (UINT8 *)(UINTN)FixedPcdGet64 (PcdGuidedExtractHandlerTableAddress);
762
763
  for (Index = 0;
       Index < FixedPcdGet32 (PcdGuidedExtractHandlerTableSize);
764
765
       ++Index)
  {
766
767
    Table[Index] = 0;
  }
768

769
770
771
772
773
  //
  // Initialize IDT - Since this is before library constructors are called,
  // we use a loop rather than CopyMem.
  //
  IdtTableInStack.PeiService = NULL;
Min Xu's avatar
Min Xu committed
774

775
  for (Index = 0; Index < SEC_IDT_ENTRY_COUNT; Index++) {
776
777
778
779
780
781
782
783
    //
    // Declare the local variables that actually move the data elements as
    // volatile to prevent the optimizer from replacing this function with
    // the intrinsic memcpy()
    //
    CONST UINT8     *Src;
    volatile UINT8  *Dst;
    UINTN           Byte;
784

785
786
    Src = (CONST UINT8 *)&mIdtEntryTemplate;
    Dst = (volatile UINT8 *)&IdtTableInStack.IdtTable[Index];
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
    for (Byte = 0; Byte < sizeof (mIdtEntryTemplate); Byte++) {
      Dst[Byte] = Src[Byte];
    }
  }

  IdtDescriptor.Base  = (UINTN)&IdtTableInStack.IdtTable;
  IdtDescriptor.Limit = (UINT16)(sizeof (IdtTableInStack.IdtTable) - 1);

  if (SevEsIsEnabled ()) {
    SevEsProtocolCheck ();

    //
    // For SEV-ES guests, the exception handler is needed before calling
    // ProcessLibraryConstructorList() because some of the library constructors
    // perform some functions that result in #VC exceptions being generated.
    //
    // Due to this code executing before library constructors, *all* library
    // API calls are theoretically interface contract violations. However,
    // because this is SEC (executing in flash), those constructors cannot
    // write variables with static storage duration anyway. Furthermore, only
    // a small, restricted set of APIs, such as AsmWriteIdtr() and
    // InitializeCpuExceptionHandlers(), are called, where we require that the
    // underlying library not require constructors to have been invoked and
    // that the library instance not trigger any #VC exceptions.
    //
    AsmWriteIdtr (&IdtDescriptor);
    InitializeCpuExceptionHandlers (NULL);
  }

816
817
  ProcessLibraryConstructorList (NULL, NULL);

818
819
820
821
822
  if (!SevEsIsEnabled ()) {
    //
    // For non SEV-ES guests, just load the IDTR.
    //
    AsmWriteIdtr (&IdtDescriptor);
823
824
825
826
827
828
829
  } else {
    //
    // Under SEV-ES, the hypervisor can't modify CR0 and so can't enable
    // caching in order to speed up the boot. Enable caching early for
    // an SEV-ES guest.
    //
    AsmEnableCache ();
830
831
  }

Min Xu's avatar
Min Xu committed
832
 #if defined (TDX_GUEST_SUPPORTED)
833
  if (CcProbe () == CcGuestTypeIntelTdx) {
Min Xu's avatar
Min Xu committed
834
835
836
837
838
839
840
841
842
    //
    // InitializeCpuExceptionHandlers () should be called in Td guests so that
    // #VE exceptions can be handled correctly.
    //
    InitializeCpuExceptionHandlers (NULL);
  }

 #endif

843
844
  DEBUG ((
    DEBUG_INFO,
845
846
847
848
849
850
851
852
853
854
855
    "SecCoreStartupWithStack(0x%x, 0x%x)\n",
    (UINT32)(UINTN)BootFv,
    (UINT32)(UINTN)TopOfCurrentStack
    ));

  //
  // Initialize floating point operating environment
  // to be compliant with UEFI spec.
  //
  InitializeFloatingPointUnits ();

856
 #if defined (MDE_CPU_X64)
857
858
859
860
  //
  // ASSERT that the Page Tables were set by the reset vector code to
  // the address we expect.
  //
861
862
  ASSERT (AsmReadCr3 () == (UINTN)PcdGet32 (PcdOvmfSecPageTablesBase));
 #endif
863

864
865
866
867
868
869
870
871
  //
  // |-------------|       <-- TopOfCurrentStack
  // |   Stack     | 32k
  // |-------------|
  // |    Heap     | 32k
  // |-------------|       <-- SecCoreData.TemporaryRamBase
  //

872
873
874
875
876
  ASSERT (
    (UINTN)(PcdGet32 (PcdOvmfSecPeiTempRamBase) +
            PcdGet32 (PcdOvmfSecPeiTempRamSize)) ==
    (UINTN)TopOfCurrentStack
    );
877

878
879
880
  //
  // Initialize SEC hand-off state
  //
881
  SecCoreData.DataSize = sizeof (EFI_SEC_PEI_HAND_OFF);
882

883
884
  SecCoreData.TemporaryRamSize = (UINTN)PcdGet32 (PcdOvmfSecPeiTempRamSize);
  SecCoreData.TemporaryRamBase = (VOID *)((UINT8 *)TopOfCurrentStack - SecCoreData.TemporaryRamSize);
885

886
887
  SecCoreData.PeiTemporaryRamBase = SecCoreData.TemporaryRamBase;
  SecCoreData.PeiTemporaryRamSize = SecCoreData.TemporaryRamSize >> 1;
888

889
890
  SecCoreData.StackBase = (UINT8 *)SecCoreData.TemporaryRamBase + SecCoreData.PeiTemporaryRamSize;
  SecCoreData.StackSize = SecCoreData.TemporaryRamSize >> 1;
891
892

  SecCoreData.BootFirmwareVolumeBase = BootFv;
893
  SecCoreData.BootFirmwareVolumeSize = (UINTN)BootFv->FvLength;
894

895
896
897
898
899
  //
  // Validate the System RAM used in the SEC Phase
  //
  SecValidateSystemRam ();

900
901
902
903
904
  //
  // Make sure the 8259 is masked before initializing the Debug Agent and the debug timer is enabled
  //
  IoWrite8 (0x21, 0xff);
  IoWrite8 (0xA1, 0xff);
905
906
907
908
909
910
911
912

  //
  // Initialize Local APIC Timer hardware and disable Local APIC Timer
  // interrupts before initializing the Debug Agent and the debug timer is
  // enabled.
  //
  InitializeApicTimer (0, MAX_UINT32, TRUE, 5);
  DisableApicTimerInterrupt ();
913

914
915
916
917
918
  //
  // Initialize Debug Agent to support source level debug in SEC/PEI phases before memory ready.
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, &SecCoreData, SecStartupPhase2);
}
919

920
921
922
923
924
925
926
927
928
929
930
931
/**
  Caller provided function to be invoked at the end of InitializeDebugAgent().

  Entry point to the C language phase of SEC. After the SEC assembly
  code has initialized some temporary memory and set up the stack,
  the control is transferred to this function.

  @param[in] Context    The first input parameter of InitializeDebugAgent().

**/
VOID
EFIAPI
932
933
SecStartupPhase2 (
  IN VOID  *Context
934
935
936
937
938
  )
{
  EFI_SEC_PEI_HAND_OFF        *SecCoreData;
  EFI_FIRMWARE_VOLUME_HEADER  *BootFv;
  EFI_PEI_CORE_ENTRY_POINT    PeiCoreEntryPoint;
939

940
  SecCoreData = (EFI_SEC_PEI_HAND_OFF *)Context;
941

942
943
944
945
946
947
948
  //
  // Find PEI Core entry point. It will report SEC and Pei Core debug information if remote debug
  // is enabled.
  //
  BootFv = (EFI_FIRMWARE_VOLUME_HEADER *)SecCoreData->BootFirmwareVolumeBase;
  FindAndReportEntryPoints (&BootFv, &PeiCoreEntryPoint);
  SecCoreData->BootFirmwareVolumeBase = BootFv;
949
  SecCoreData->BootFirmwareVolumeSize = (UINTN)BootFv->FvLength;
950
951
952
953

  //
  // Transfer the control to the PEI core
  //
954
  (*PeiCoreEntryPoint)(SecCoreData, (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTable);
955

956
957
958
959
960
961
962
963
964
965
  //
  // If we get here then the PEI Core returned, which is not recoverable.
  //
  ASSERT (FALSE);
  CpuDeadLoop ();
}

EFI_STATUS
EFIAPI
TemporaryRamMigration (
966
967
968
969
  IN CONST EFI_PEI_SERVICES  **PeiServices,
  IN EFI_PHYSICAL_ADDRESS    TemporaryMemoryBase,
  IN EFI_PHYSICAL_ADDRESS    PermanentMemoryBase,
  IN UINTN                   CopySize
970
971
972
973
974
975
976
977
978
979
  )
{
  IA32_DESCRIPTOR                  IdtDescriptor;
  VOID                             *OldHeap;
  VOID                             *NewHeap;
  VOID                             *OldStack;
  VOID                             *NewStack;
  DEBUG_AGENT_CONTEXT_POSTMEM_SEC  DebugAgentContext;
  BOOLEAN                          OldStatus;
  BASE_LIBRARY_JUMP_BUFFER         JumpBuffer;
980

981
982
  DEBUG ((
    DEBUG_INFO,
983
984
985
986
    "TemporaryRamMigration(0x%Lx, 0x%Lx, 0x%Lx)\n",
    TemporaryMemoryBase,
    PermanentMemoryBase,
    (UINT64)CopySize
987
    ));
988

989
990
  OldHeap = (VOID *)(UINTN)TemporaryMemoryBase;
  NewHeap = (VOID *)((UINTN)PermanentMemoryBase + (CopySize >> 1));
991

992
993
  OldStack = (VOID *)((UINTN)TemporaryMemoryBase + (CopySize >> 1));
  NewStack = (VOID *)(UINTN)PermanentMemoryBase;
994

995
  DebugAgentContext.HeapMigrateOffset  = (UINTN)NewHeap - (UINTN)OldHeap;
996
  DebugAgentContext.StackMigrateOffset = (UINTN)NewStack - (UINTN)OldStack;
997

998
  OldStatus = SaveAndSetDebugTimerInterrupt (FALSE);
999
  InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, (VOID *)&DebugAgentContext, NULL);
1000

For faster browsing, not all history is shown. View entire blame