Commit ac79f78d authored by David Rientjes's avatar David Rientjes Committed by Linus Torvalds
Browse files

Revert "Revert "mm, thp: restore node-local hugepage allocations""

This reverts commit a8282608


The commit references the original intended semantic for MADV_HUGEPAGE
which has subsequently taken on three unique purposes:

 - enables or disables thp for a range of memory depending on the system's
   config (is thp "enabled" set to "always" or "madvise"),

 - determines the synchronous compaction behavior for thp allocations at
   fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"),

 - reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only
   clear previous hugepage advice).

These are the three purposes that currently exist in 5.2 and over the
past several years that userspace has been written around.  Adding a
NUMA locality preference adds a fourth dimension to an already conflated
advice mode.

Based on the semantic that MADV_HUGEPAGE has provided over the past
several years, there exist workloads that use the tunable based on these
principles: specifically that the allocation should attempt to
defragment a local node before falling back.  It is agreed that remote
hugepages typically (but not always) have a better access latency than
remote native pages, although on Naples this is at parity for

The revert commit that this patch reverts allows hugepage allocation to
immediately allocate remotely when local memory is fragmented.  This is
contrary to the semantic of MADV_HUGEPAGE over the past several years:
that is, memory compaction should be attempted locally before falling

The performance degradation of remote hugepages over local hugepages on
Rome, for example, is 53.5% increased access latency.  For this reason,
the goal is to revert back to the 5.2 and previous behavior that would
attempt local defragmentation before falling back.  With the patch that
is reverted by this patch, we see performance degradations at the tail
because the allocator happily allocates the remote hugepage rather than
even attempting to make a local hugepage available.

zone_reclaim_mode is not a solution to this problem since it does not
only impact hugepage allocations but rather changes the memory
allocation strategy for *all* page allocations.
Signed-off-by: default avatarDavid Rientjes <>
Cc: Andrea Arcangeli <>
Cc: Michal Hocko <>
Cc: Mel Gorman <>
Cc: Vlastimil Babka <>
Cc: Stefan Priebe - Profihost AG <>
Cc: "Kirill A. Shutemov" <>
Cc: Andrew Morton <>
Signed-off-by: default avatarLinus Torvalds <>
parent 4d856f72
......@@ -139,8 +139,6 @@ struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
struct mempolicy *get_task_policy(struct task_struct *p);
struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
unsigned long addr);
struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
unsigned long addr);
bool vma_policy_mof(struct vm_area_struct *vma);
extern void numa_default_policy(void);
......@@ -648,37 +648,27 @@ release:
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
gfp_t this_node = 0;
struct mempolicy *pol;
* __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
* specified, to express a general desire to stay on the current
* node for optimistic allocation attempts. If the defrag mode
* and/or madvise hint requires the direct reclaim then we prefer
* to fallback to other node rather than node reclaim because that
* can lead to excessive reclaim even though there is free memory
* on other nodes. We expect that NUMA preferences are specified
* by memory policies.
pol = get_vma_policy(vma, addr);
if (pol->mode != MPOL_BIND)
this_node = __GFP_THISNODE;
const gfp_t gfp_mask = GFP_TRANSHUGE_LIGHT | __GFP_THISNODE;
/* Always do synchronous compaction */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
(vma_madvised ? 0 : __GFP_NORETRY);
/* Kick kcompactd and fail quickly */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
return gfp_mask | __GFP_KSWAPD_RECLAIM;
/* Synchronous compaction if madvised, otherwise kick kcompactd */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
__GFP_KSWAPD_RECLAIM | this_node);
return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM :
/* Only do synchronous compaction if madvised */
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
return GFP_TRANSHUGE_LIGHT | this_node;
return gfp_mask | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
return gfp_mask;
/* Caller must hold page table lock. */
......@@ -1734,7 +1734,7 @@ struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
* freeing by another task. It is the caller's responsibility to free the
* extra reference for shared policies.
struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
unsigned long addr)
struct mempolicy *pol = __get_vma_policy(vma, addr);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment